Citation: | CONG Yu-hao, CAI Jia-ning, XIANG Jia-xiang. GP-Stability of Rosenbrock Methods for System of Delay Differential Equation[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1285-1291. |
[1] |
Bellen A, Jackiewicz Z, Zennaro M.Stability analysis of one-step methods for neutral delay-differential equations[J].Numerische Mathematik,1988,52(3):605—619. doi: 10.1007/BF01395814
|
[2] |
LIU Ming-zhu,Spijker M N.The stability of θ-methods in the numerical solution[J].IMA Journal of Numerical Analysis, 1990,10(1):31—48. doi: 10.1093/imanum/10.1.31
|
[3] |
in't Hout K J.The stability of θ-methods for systems of delay differential equations[J].Annals of Numerical Mathematics,1994,1(3):323—334.
|
[4] |
Koto T.A stability property of A-stable natural Runge-Kutta methods for systems of delay differential equations[J].BIT,1994,34(2):262—267. doi: 10.1007/BF01955873
|
[5] |
HU Guang-da,Mitsui T.Stability of numerical methods for systems of nautral delay differential equations[J].BIT,1995,35(4):504—515. doi: 10.1007/BF01739823
|
[6] |
Hairer E,Nrsett S P,Wanner G.Solving Ordinary Differential Equations[M].New York:Springer-Verlag,2000,103—117.
|
[7] |
曹学年,刘德贵,李寿佛.求解延迟微分方程的Rosenbrock方法的渐近稳定性[J].系统仿真学报, 2002,14(3):290—292.
|
[8] |
Lambert J D.Computational Methods in Ordinary Differentail Equations[M].New York:John-Willy,1990.
|
[9] |
KUANG Jiao-xun,TIAN Hong-jiong.The asymptotic behaviour of theoretical and numerical solutions for nonlinear differential systems with several delay terms[J].Journal of Shanghai Teachers University(Natural Sciences),1995,24(1):1—7.
|
[10] |
in't Hout K J.A new interpolation procedure for adapting Runge-Kutta methods to delay differential equations[J].BIT,1992,32(4):634—649. doi: 10.1007/BF01994847
|
[11] |
匡蛟勋.块θ方法的PL-稳定性[J].计算数学,1997,15(2):135—140.
|
[12] |
YANG Biao,QIU Lin,KUANG Jiao-xun.The GPL-stability of Runge-Kutta methods for delay differential systems[J].J Comput Math,2000,18(1):75—82.
|
[13] |
Huang C M, Li S F,Fu H Y,et al.Stability and error analysis of one-leg methods for nonlinear delay differential equations[J].Journal of Computational and Applied Mathematics,1999,103(2):263—279. doi: 10.1016/S0377-0427(98)00262-3
|
[14] |
CHEN Li-rong, LIU De-gui.Combined RK-Rosenbrock methods and their stability[J].Mathematica Numerica Sinica,2000,22(3):319—332.
|
[15] |
LI Shou-fu.Nonlinear stability of general linear methods[J].Journal of Computational Mathematics,1991,9(2):97—104.
|
[16] |
Robert Piché.An L-stable Rosenbrock method for step-by-step time integration in structual dynamics[J].Computer Methods in Applied Mechanics and Engineering,1995,126(3/4):343—354. doi: 10.1016/0045-7825(95)00823-J
|
[17] |
SUN Geng.A class of single step methods with a large interval of absolute stability[J].J Comput Math,1991,9(2):185—193.
|
[18] |
Barwell V K.Special stability problems for functional differential equations[J].BIT,1975,15(2):130—135. doi: 10.1007/BF01932685
|
[19] |
ZHANG Cheng-jian, ZHOU Shu-zi.Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations[J].Journal of Computational and Applied Mathematics,1997,85(2):225—237. doi: 10.1016/S0377-0427(97)00118-0
|