LI Xin-bin, HUANG Yong-nian, YANG Ying, HUANG Lin. Critical Damping of the Second-Order Pendulum-Like Systems[J]. Applied Mathematics and Mechanics, 2005, 26(1): 7-15.
Citation: LI Xin-bin, HUANG Yong-nian, YANG Ying, HUANG Lin. Critical Damping of the Second-Order Pendulum-Like Systems[J]. Applied Mathematics and Mechanics, 2005, 26(1): 7-15.

Critical Damping of the Second-Order Pendulum-Like Systems

  • Received Date: 2003-11-15
  • Rev Recd Date: 2004-09-25
  • Publish Date: 2005-01-15
  • First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were dicussed.Then the case with a general form of nonlinearity is considered and its global properties were studied by using the qualitative theory of differential equations.As a result,sufficient conditions for estimating the critical damp are established,which improves the work by Leonov et al.
  • loading
  • [1]
    Leonov G A,Smirnova V B. Analysis of frequency-of-oscillations-controlled systems[A].In:St Petersbuvg,Ed.Proceedings of International Conference on Control of Oscillations and Chaos[C](Russia).1997,2:439—441.
    [2]
    Leonov G A,Tomayev A,Chshiyeva T.Stability of frequency-phase locked automatic frequency control systems[J].Soviet Journal of Communications Technology and Electronics,1992,37(11):1—9.
    [3]
    Tricomi F. Integrazione di unequazione differenziale presentatasi in electrotechnica[J].Annali Della Roma Scuola Normale Superiore de Pisa:Scienza Phys e Mat,1933,2:1—20.
    [4]
    Andronow A A,Chaikin C E.Theory of Oscillations[M].Princeton University Press, 1966.
    [5]
    Amerio L. Determinazione delle condizioni di stabilita per gli integrali di un'equazione ineressante I'elettrotacnica[J].Annali di Matematica Pura ed Applicata,1949,4(30):75—90.
    [6]
    Hayes W D. On the equation for a damped pendulum under constant torque[J].Z A M Ph,1953,4(5):398—401. doi: 10.1007/BF02074983
    [7]
    Sansone G,Conti R.非线性微分方程[M].黄启昌,金成桴,史希福 译. 北京:科学出版社,1983.
    [8]
    Leonov G A,Ponomarenko D V,Smirnova V B.Frequency-Domain Methods for Nonlinear Analysis[M].Singapore: World Scientific, 1996.
    [9]
    Arie E,Botgros M,Halanay A,et al.Transient stability of the synchronous machine[J].Rev Roum Sci Techn Serie Electrotechn et Energy,1974,19(4):611—625.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3012) PDF downloads(594) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return