Loo Wen-da. Doubly Curved Shallow Shells with the Rectangular Bases Elasticaily Supported by Edge Arch Beams and Tie-Rods (Ⅱ)[J]. Applied Mathematics and Mechanics, 1981, 2(1): 75-95.
Citation: Loo Wen-da. Doubly Curved Shallow Shells with the Rectangular Bases Elasticaily Supported by Edge Arch Beams and Tie-Rods (Ⅱ)[J]. Applied Mathematics and Mechanics, 1981, 2(1): 75-95.

Doubly Curved Shallow Shells with the Rectangular Bases Elasticaily Supported by Edge Arch Beams and Tie-Rods (Ⅱ)

  • Received Date: 1979-11-06
  • Publish Date: 1981-02-15
  • This paper gives the results of numerical calculation based upon the method of double trigonometrical seiies on the problems of spherical shallow shells with square bases elastically supported by arch beams.The corners are pinned supported or simply supporred. The calculated results for λ=11.5936 show that the trigonometrical series converges rapidly. The effect of elastic deformation in the arch beams to the components of membrane tension, moment's and deflections of the shell are given.
  • loading
  • [1]
    Власов,В.З.,Избраные труды,том Ⅰ,(1962),стр 459-466,издат академии наук СССР,Москва.
    [2]
    Дикович,В.В.,Расчет полотöи прямоугольыой в плане оболочки вращеныя,Расчет пространственных конструнции,Т.Ⅳ стр.393-414 госстройнздат,(1958).
    [3]
    Диковыч,В.В.,Полотие прямоугольные в плане оболочке вращения госсройиздат,(1960).
    [4]
    何广乾等,四边简支常曲率双曲扁壳的简化计算,土木工程学报,6. 7. (1959).及对该文的讨论和补充,土木工程学报,6, 12, (1959)
    [5]
    胡海昌,四边简支矩形底球面扁壳楼盖的简化计算方法,力学学报,5, 1, (1962).
    [6]
    北京第一工业建筑设计院,双曲薄壳设计部份总结(48M×48M), (1959).
    [7]
    Силкын,Е.И.,Расчет пологих оболчек на упругом контуре известия академый наук,СССp,О.Т.Н.,(1985).(No.8)стр.101-106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1730) PDF downloads(734) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return