MO Jia-qi, WANG Hui. Shift of Shock Position for a Class of Nonlinear Singularly Perturbed Problems[J]. Applied Mathematics and Mechanics, 2005, 26(1): 53-57.
Citation: MO Jia-qi, WANG Hui. Shift of Shock Position for a Class of Nonlinear Singularly Perturbed Problems[J]. Applied Mathematics and Mechanics, 2005, 26(1): 53-57.

Shift of Shock Position for a Class of Nonlinear Singularly Perturbed Problems

  • Received Date: 2003-05-06
  • Rev Recd Date: 2004-08-07
  • Publish Date: 2005-01-15
  • The shift of shock position for a class of nonlinear singularly perturbed problems is considered using a special and simple method.The location of the shock wave will be larger move,even from interior layer to the boundary layer when the boundary conditions change smaller.
  • loading
  • [1]
    de Jager E M,JIANG Fu-ru.The Theory of Singular Perturbation[M].Amsterdam: North-Holland Publishing Co., 1996.
    [2]
    Bohé A.The shock location for a class of sensitive boundary value problems[J].J Math Anal Appl,1999,235(1): 295—314. doi: 10.1006/jmaa.1999.6399
    [3]
    Butuzov V F,Smurov I.Initial boundary value problem for a singularly perturbed parabolic equation in case of exchange of stability[J].J Math Anal Appl,1999,234(1):183—192. doi: 10.1006/jmaa.1999.6351
    [4]
    O'Malley Jr R E.On the asymptotic solution of the singularly perturbed boundary value problems posed by Bohé[J].J Math Anal Appl,2000,242(1):18—38. doi: 10.1006/jmaa.1999.6641
    [5]
    Butuzov V F,Nefedov N N,Schneider K R.Singularly perturbed elliptic problems in the case of exchange of stabilities[J].J Differential Equations,2001,169(2):373—395. doi: 10.1006/jdeq.2000.3904
    [6]
    Kelley W G.A singular perturbation problem of Carrier and Pearson[J].J Math Anal Appl,2001,255(3):678—697. doi: 10.1006/jmaa.2000.7308
    [7]
    MO Jia-qi.Singular perturbation for a boundary value problems of fourth order nonlinear differential equation[J].Chinese Ann Math,Ser B,1989,8(1):80—88.
    [8]
    MO Jia-qi.A singularly perturbed nonlinear boundary value problem[J].J Math Anal Appl,1993,178(1):289—293. doi: 10.1006/jmaa.1993.1307
    [9]
    MO Jia-qi.A class of singularly perturbed boundary value problems for nonlinear differential systems[J].Systems Sci Math Sci,1999,12(1): 56—58.
    [10]
    MO Jia-qi.The singularly perturbed problem for combustion reaction diffusion[J].Acta Math Appl Sinica(English Ser),2001,17(2):255—259. doi: 10.1007/BF02669579
    [11]
    MO Jia-qi.Singular perturbation for a class of nonlinear reaction diffusion systems[J].Science in China,Ser A,1989,32(11):1306—1315.
    [12]
    MO Jia-qi.A class of singularly perturbed problems with nonlinear reaction diffusion equation[J].Adv in Math,1998,27(1):53—58.
    [13]
    MO Jia-qi.A class of singularly perturbed reaction diffusion integral differential system[J].Acta Math Appl Sinica,1999,15(1):19—23.
    [14]
    MO Jia-qi,CHEN Yu-sen.A class of singularly perturbed for reaction diffusion systems with nonlocal boundary conditions[J].Acta Math Sci,1997,17(1):25—30.
    [15]
    MO Jia-qi,Ouyang Cheng.A class of nonlocal boundary value problems of nonlinear elliptic systems in unbounded domains[J].Acta Math Sci,2001,21(1):93—97.
    [16]
    MO Jia-qi,WANG Hui.A class of nonlinear nonlocal singularly perturbed problems for reaction diffusion equations[J].J Biomath,2002,17(2):143—148.
    [17]
    MO Jia-qi,WANG Hui.The shock solution for quasilinear singularly perturbed Robin problem[J].Progress in Natural Sci,2002,12(12):945—947.
    [18]
    Jacson L K.Subfunctions and second order ordinary differential inequalities[J].Adv in Math,1968,2(2):307—363. doi: 10.1016/0001-8708(68)90022-4
    [19]
    Laforgue J G,O'Malley R E.Shock layer movement for Burgers equation[J].SIAM J Appl Math,1995,55(2):332—348. doi: 10.1137/S003613999326928X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2763) PDF downloads(645) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return