Yu Xin. A Theory of Classical Spacetime(Ⅰ)——Foundations[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1051-1064.
Citation: Yu Xin. A Theory of Classical Spacetime(Ⅰ)——Foundations[J]. Applied Mathematics and Mechanics, 1987, 8(12): 1051-1064.

A Theory of Classical Spacetime(Ⅰ)——Foundations

  • Received Date: 1986-08-12
  • Publish Date: 1987-12-15
  • Despite its beauty and grandeur the theory of GR still appears to be incomplete in the following ways:(1) It cannot accommodate the asymmetric total energy momentum tensor whose asymmetry has been shown to exist in the presence of electromagnetism.(2) The law of angular momentum balance as an exact equation is not an automatic consequence of the field equations as is the. case, with the law of linear momentum balance.(3) The four degrees of arbitrariness left by the contracted second Bianchi identity makes a unique solution of the field equations unattainable without extra (unphysical) postulates.To answer the challenge posed by the above assertions we propose in this paper to complete Einstein's theory by postulating the principle fibre bundle P[M,SU(2)] for the underlying geometry of tile 4-dtmensional spacetime, where the structure group SU (2) is the real representation of the special complex unitary gioup of dimension 2; SU (2) leaves concurrently invariant the metric form dS2=gαβdxαdxβ and the fundamental 2-form φ=(1/2l)aαβdxα∧dxβ defined globally on M. The Einstein equation defined in terms of the SU(2)-connection is imposed on the spacetime manifold together with the Maxwell inhomogeneous equation as the supplementary condition where the electromagnetic tensor is identified with a contracted form of the curvature tensor. The result is a set of 16 functionally independent equations to the 16 unknown field variables (gαβ,aαβ). Moreover, the law of angular momentum balance is Just the skew-symmetric part of the generalized Einstein equation where the spin angular momentum tensor is shown directly proportional to the torsion tensor.
  • loading
  • [1]
    Winicour,J.,in General Relativity and Gravitation,A.Held and P.Bergman,eds.,Vol.2,Plenum,N.Y.(1980).
    [2]
    Cartan,E.,Comptus Rendus,174(1922),593;Ann.Ec.Norm.,40(1923),325.
    [3]
    Trautman,A.,Bull.Acad.Polon.Sci.,20(1972),185,503.
    [4]
    Henl,F.W.,et al.,Rev.Mod.Phys.,18(1976),393.
    [5]
    Bleeker,D.,Gauge Theory and Variational Principles,Addison-Wesley,Mass.(1981).
    [6]
    Sternberg,S.,Lectures in Differential Geometry,Prentice-Hall,N.J.(1963).
    [7]
    Kobayashi,S.,Transformation Groups in Differential Geometry,Springer-Verlag,Berlin (1972).
    [8]
    Hermann,R.,Quantum and Fermion Differential Geometry,Part A,Math.Sci.Press.Brookline,Mass.(1977).
    [9]
    Kobayashi,S.and K.Nomizu,Foundations of Differential Geometry,Vol.1.Interscience,N.Y.(1963).
    [10]
    Misner,C.W.,et al.,Gravitation,W.H.Freeman,San Francisco (1973).
    [11]
    Stephani,H.,General Relativity,Cambridge Univ.Press,Cambridge (1982).
    [12]
    Hermann,R.,Gauge Fields and Cartan-Ehresmann Connections,Part A,Math.Sci.Press,Brookline,Mass.(1975).
    [13]
    Frankel,T.,Gravitational Curvature,W.H.Freeman,San Francisco (1979).
    [14]
    Schouten,J.A.,Ricci Calculus,Springer-Verlag,Berlin (1954).
    [15]
    De Groot,S.R.,et al,Foundations of Electrodynamics,North-Holland,Amsterdam (1972).
    [16]
    Heyde,P.von der et al.,Proc.Ist Marcel Grosmann Meeting on G.R.,North-Holland,Amsterdam (1977),255.
    [17]
    Fock,V.,The Theory of Space,Time and Gravitation,Pergamon,Oxford (1964).
    [18]
    Weinberg,S.,Gravitation and Cosmology,John Wiley,N.Y.(1972).
    [19]
    Prassanna,A.R.,Phys.Lett.,54A (1975),17.
    [20]
    Hawking,S.,et al.The Large Scale Structure of Spacetime,Cambridge University Press,Cambridge (1973).
    [21]
    Stratton,J.A.,Electromagnetic Theory,McGraw-Hill,N.Y.(1941).
    [22]
    Einstein,A.,in P.A.Schilpp,Albert-Einstein-Philosopher-Scientist,Library of Living Philosophers(1949).
    [23]
    Einstein,A.,The Meaning of Relativity,6th ed.,Princeton Univ.Press (1956).
    [24]
    Buchdanl,H.A.,Proc.Camb.Phil.Soc.,56(1960),396.
    [25]
    Atkinson,R.d'E,Astro.J,70 (1965),513.
    [26]
    Atkinson,R.d'E,Proc.Roy.Soc.(Lond.),Series A,272 (1963),60.
    [27]
    Finlayson,B.A.,Phys.Eluids,15 (1972),963.
    [28]
    Atnerton,R.W.and G.M.Homsy,Stud Appl.Math.,54(1975),31.
    [29]
    Sachs,M.,General Relativity and Matter,D.Beidel Dordrecht,Holland(1982).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2010) PDF downloads(558) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return