LUO Hai-ying, LI Ji-bin. What Are the Separatrix Values Named by Leontovich on Homoclinic Bifurcation[J]. Applied Mathematics and Mechanics, 2005, 26(4): 418-425.
Citation: LUO Hai-ying, LI Ji-bin. What Are the Separatrix Values Named by Leontovich on Homoclinic Bifurcation[J]. Applied Mathematics and Mechanics, 2005, 26(4): 418-425.

What Are the Separatrix Values Named by Leontovich on Homoclinic Bifurcation

  • Received Date: 2003-06-20
  • Rev Recd Date: 2004-12-03
  • Publish Date: 2005-04-15
  • For a given system,by using the Tkachev method which concerned with the proof of the stability of a multiple limit cycle,the exact computation formula of the third separatrix values named by Leontovich for the multiple limit cycle bifurcation was given,which was one of the main criterions for the number of limit cycles bifurcated from a homoclinic orbit and the stability of the homoclinic loop,and a computation formula for higher separatrix values was conjectured.
  • loading
  • [1]
    Andronov A A,Leontovich E A,Gordon I I,et al.Theory of Bifurcations of Dynamical Systems on a Plane[M].New York:John Wiley & Sons, 1973.
    [2]
    冯贝叶,钱敏.鞍点分界线环的稳定性及其分支出极限环的条件[J].数学学报,1985,28(1):53—70.
    [3]
    Joyal P.Generalized Hopf bifurcation and its dual, generalized homoclinic bifurcation[J].SIAM J Appl Math,1988,48(3):481—496. doi: 10.1137/0148027
    [4]
    Leontovich E A.On the generation of limit cycles from a separatrix[J].Dokl Acad Nauka,1951,78(4):641—644.
    [5]
    Roussarie R.On the number of limit cycles which appear by perturbation of separatrix loop of planar vector fields[J].Bol Soc Brasil Mat,1986,17(1):67—101. doi: 10.1007/BF02584827
    [6]
    Roussarie R.A note on finite cyclicity and Hilbert's 16th problem[A].In:Bamom R,Labarca J,Palis Jr,et al Eds.Dynamical Systems, Valparaiso 1986,Lecture Notes in Math[C].1331.New York: Springer-Verlag,1988,161—168.
    [7]
    Roussarie R.Techniques in the theory of local bifurcations: cyclicity and desingularization[A].In:Schlomiuk D Ed.Bifurcations and Periodic Orbits of Vector Fields[C].NATO ASI Series C.408.London:Kluwer Academic Publishers,1993,347—382.
    [8]
    LIU Yi-rong,LI Ji-bin.Theory of values of singular point in complex autonomous differential systems[J].Science in China,1990,33(1):10—23.
    [9]
    CAI Sui-lin,ZHANG Ping-guang.A quadratic system with a weak saddle II[J].Ann Differantial Equations,1988,4(2):131—142.
    [10]
    Amelikin B B,Lukashivich H A,Sadovski A P.Nonlinear Oscillations in Second Order Systems[M].Minsk: BGY lenin B I Press,1982.
    [11]
    李伟固.正规型理论及其应用[M].北京: 北京科技出版社,2000.
    [12]
    Hilbert D.Mathematical problems[J].Proceeding of Symposia in Pure Mathematics,1976,28(1):1—34.
    [13]
    LUO Ding-jun,WANG Xian,ZHU De-ming,et al.Bifurcation Theory and Methods of Dynamical Systems[M].Singapore:World Scientific,1997.
    [14]
    Perko L M.Differential Equations and Dynamical Systems[M].New York: Springer-Verlag, 1991.
    [15]
    叶彦谦.极限环论[M].上海:上海科技出版社,1984.
    [16]
    张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].上海:上海科技出版社,1995.
    [17]
    胡锐,冯贝叶.确定多重极限环的半稳定性及对二阶临界同宿环稳定性的判定[A].见:国际动力系统和常微分方程会议,北京,2001.
    [18]
    Ткачев В Ф.Необходимые и достаточные условия устойчивости полуустойчивости и неустойчивости предельного цикла и некоторые их приложения[J].Математический Сворник,1962,56(3):281—300.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2795) PDF downloads(898) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return