DUAN Wan-suo, MU Mu. Applications of Nonlinear Optimization Method to the Numerical Studies of Atmospheric and Oceanic Sciences[J]. Applied Mathematics and Mechanics, 2005, 26(5): 585-594.
Citation: DUAN Wan-suo, MU Mu. Applications of Nonlinear Optimization Method to the Numerical Studies of Atmospheric and Oceanic Sciences[J]. Applied Mathematics and Mechanics, 2005, 26(5): 585-594.

Applications of Nonlinear Optimization Method to the Numerical Studies of Atmospheric and Oceanic Sciences

  • Received Date: 2003-11-21
  • Rev Recd Date: 2004-11-04
  • Publish Date: 2005-05-15
  • Linear singular vect or and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid. With this in mind, the applications of nonlinear optimization methods to the atmospheric and oceanic sciences are introduced, which include nonlinear singular vector (NSV) and nonlinear singular value (NSVA), conditional nonlinear optimal perturbation (CNOP), and their applications to the studies of predictability in numerical weather and climate prediction. The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be explored by NSV and CNOP. Also attentions are paid to the introduction of the classification of predictability problems, which are related to the maximum predictable time, the maximum prediction error, and the maximum allowing error of initial value and the parameters. All the information has the background of application to the evaluation of products of numerical weather and climate prediction. Furthermore the nonlinear optimization methods of the sensitivity analysis with numerical model are also introduced, which can give a quantitative assessment whether a numerical model is able to simulate the observations and find the initial field that yield the optimal simulation. Finally, the difficulties in the lack of ripe algorithms are also discussed, which leave future work to both computational mathematics and scientists in geophysics.
  • loading
  • [1]
    Thompson P D.Uncertainty of initial state as a factor in the predictability of large-scale atmospheric flow patterns[J].Tellus,1957,9(3):275—295. doi: 10.1111/j.2153-3490.1957.tb01885.x
    [2]
    Lorenz E N.Deterministic nonperiodic flow[J].J Atmos Sci,1963,20(2):130—141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [3]
    丑纪范,郜吉东.长期数值天气预报[M].北京:气象出版社,1995.
    [4]
    Buizza R, Palmer T N. The singular vector structure of the atmospheric global circulation[J].J Atmos Sci,1995,52(9):1434—1456. doi: 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
    [5]
    Thompson C J, Initial conditions for optimal growth in couple ocean atmosphere model of ENSO[J].J Atmos Sci,1998:55(4):537—557.
    [6]
    Lorenz E N.A study of the predictability of a 28-variable atmospheric model[J].Tellus,1965,17(4):321—333. doi: 10.1111/j.2153-3490.1965.tb01424.x
    [7]
    Farrell B F.The growth of disturbance in a baroclinic flow[J].J Atmos Sci,1982,39(8):1663—1686. doi: 10.1175/1520-0469(1982)039<1663:TIGODI>2.0.CO;2
    [8]
    Xue Y, Cane Y M A,Zebiak S E, Predictability of a coupled model of ENSO using singular vector analysis, Part I: Optimal growth in seasonal background and ENSO cycles[J].Mon Wea Rev,1997,125(12):2043—2056.
    [9]
    Roger M,Samelson E T.Instability of the Chaotic ENSO: The growth-phase predictability barrier[J].J Atmos Sci,2001,58(23): 3613—3625. doi: 10.1175/1520-0469(2001)058<3613:IOTCET>2.0.CO;2
    [10]
    Lacarra J F, Talagrand O.Short-range evolution of small perturbation in a baratropic model[J].Tellus,1988,40A(1):81—95. doi: 10.1111/j.1600-0870.1988.tb00408.x
    [11]
    Tanguay M, Bartello P.Four-dimensional data assimilation with a wide range of scales[J].Tellus,1995,47A(6):974—997.
    [12]
    MU Mu, GUO Huan, WANG Jia-feng,et al.The impact of nonlinear stability and instability on the validity of the tangent linear model[J].Adv Atmos Sci,2000,17(3):375—385. doi: 10.1007/s00376-000-0030-9
    [13]
    MU Mu.Nonlinear singular vectors and nonlinear singular values[J].Science in China,Ser D,2000,43(4):375—385.
    [14]
    MU Mu,DUAN Wan-suo.A new approach to studying ENSO predictability: conditional nonlinear optimal perturbation[J].Chinese Science Bulletin,2003,48(10):1045—1047.
    [15]
    Lorenz E N.Climate predictability: the physical basis of climate modeling[J].WMO, GARP Pub Ser,1975,16(1):132—136.
    [16]
    MU Mu, DUAN Wan-suo,WANG Jia-cheng.The predictability problems in numerical weather and climate prediction[J].Adv Atmos Sci,2002,19(2):191—204. doi: 10.1007/s00376-002-0016-x
    [17]
    Talagrand O.Assimilation of observations, an introduction[J].J Meteor Soc Japan,1997,1B(2):191—209.
    [18]
    Hollingsworth A, Lorenc A C, Tracton M S,et al.The response of numerical weather prediction systems to FGGE level Iib data-Part I:Analyses Quart J Roy Meteor Soc,1985,111(1):1—66.
    [19]
    Errico R M,Vukicevic T.Sensitivity analysis using an adjoint of the PSU-NCAR mesoscale model[J].Mon Wea Rev,1992,120(8):1644—1660. doi: 10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2
    [20]
    Ehrendorfer M,Errico R M.Mesoscale predictability and the spectrum of optimal perturbations[J].J Atmos Sci,1986,52(20):3475—3500.
    [21]
    Zou X, Navan I M,Dimet Le F X.Incomplete observations and control of gravity waves in varational data assimilation[J].Tellus,1992,44A(2):273—298.
    [22]
    Rabier F, Klinker E, Courtier P,et al.Sensitivity of forecast errors to initial conditions[J].Quart J Roy Meteor Soc,1996,122(1):121—150. doi: 10.1002/qj.49712252906
    [23]
    MU Mu, WANG Jia-cheng.Nonlinear fastest growing perturbation and the first kind of predictability[J].Science in China (D),2001,44(12):1128—1139. doi: 10.1007/BF02906869
    [24]
    Durbiano S.Vecteurs caractéristiques de modéles océaniques pour la ré duction d'ordre er assimilation de données[D].Doctor Dissertation,Université Joseph Fourier-Grenoble Science Et Géographie,2001,1—214.
    [25]
    Bjerknes J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature[J].Tellus,1966,18(5):820—829. doi: 10.1111/j.2153-3490.1966.tb00303.x
    [26]
    MU Mu,DUAN Wan-suo,WANG Bin.Conditional nonlinear optimal perturbation and its applications[J].Nonlinear Processes in Geophysics,2003,10(6):493—501. doi: 10.5194/npg-10-493-2003
    [27]
    Lohmann G,Schneider J.Dynamics and predictability of Stomel's box model. A phase-space perspective with implications for decadal climate variability[J].Tellus,1999,51A(2):326—336.
    [28]
    MU Mu, SUN Liang,Dijkstra H A.Applications of conditional nonlinear optimal perturbation to the sensitivity of the thermohaline circulation to finite amplitude freshwater perturbations[J].J Physical Oceanography,2004,34(10):2305—2315. doi: 10.1175/1520-0485(2004)034<2305:TSASOT>2.0.CO;2
    [29]
    MU Mu, DUAN Wan-suo,WANG Jia-feng.Nonlinear optimization problems in atmospheric and oceanic sciences[J].East-West Journal of Mathematics.Thailand, 2002,155—164.
    [30]
    XU Hui,MU Mu,LUO De-hai.An application of nonlinear optimization method to sensitivity analysis of numerical model[J].Progress in Natural Sciences,2004,14(6):546—549. doi: 10.1080/10020070412331343921
    [31]
    Liu D C,Nocedal J.On the memory BFGS method for large-scale optimization[J].Mathematical Programming,1989,45(3):503—528. doi: 10.1007/BF01589116
    [32]
    Powell M J D, VMCWD: A FORTRAN subroutine for constrained optimization[R]. DAMTP Report 1982/NA4, University of Cambridge, England, 1982,1—89.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2699) PDF downloads(1304) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return