ZHANG Hong, ZHANG Xuan-bing, GE Xiu-run. Application of Wavelet Theory in Research on Weight Function of Meshless Method[J]. Applied Mathematics and Mechanics, 2005, 26(5): 609-613.
Citation: ZHANG Hong, ZHANG Xuan-bing, GE Xiu-run. Application of Wavelet Theory in Research on Weight Function of Meshless Method[J]. Applied Mathematics and Mechanics, 2005, 26(5): 609-613.

Application of Wavelet Theory in Research on Weight Function of Meshless Method

  • Received Date: 2003-11-08
  • Rev Recd Date: 2004-12-31
  • Publish Date: 2005-05-15
  • Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis, so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions. Now, the useful new way to research weight function is found, and the numerical result is given.
  • loading
  • [1]
    Belytschko T,Lu Y Y,Gu L.Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37:229—256. doi: 10.1002/nme.1620370205
    [2]
    Monaghan J.An introduction to SPH[J].Computer Physics Communication,1988,48:89—96. doi: 10.1016/0010-4655(88)90026-4
    [3]
    Liu W K,Jun S,Zhang S.Reproducing kernel particle methods[J].International Journal for Numerical Methods in Fluids,1995,20:1081—1106. doi: 10.1002/fld.1650200824
    [4]
    Melenk J M,Babuska I.The partition of unity finite element method: basic theory and application[J].Computer Methods in Applied Mechanics Engineering,1996,139:289—314. doi: 10.1016/S0045-7825(96)01087-0
    [5]
    周小平.对进一步发展无单元法的几点设想[J].福州大学学报,2001,29(3):84—87.
    [6]
    Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(r)[J].Trans of the American Mathematical Society,1989,315:69—87.
    [7]
    赵松年,熊小芸.小波变换与子波分析[M].北京:电子工业出版社,1992.
    [8]
    Charles K C.An Introduction to Wavelet[M].Academic Press,1992.
    [9]
    张选兵.基于敏感性分析和小波分析的无单元研究[D].武汉:中国科学院武汉岩土力学研究所,2002,06.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2712) PDF downloads(651) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return