ZHANG Jing, ZHOU Zhe-wei. Chebyshev Approximation of the Second Kind of Modified Bessel Function of Order Zero[J]. Applied Mathematics and Mechanics, 2004, 25(5): 441-445.
Citation: ZHANG Jing, ZHOU Zhe-wei. Chebyshev Approximation of the Second Kind of Modified Bessel Function of Order Zero[J]. Applied Mathematics and Mechanics, 2004, 25(5): 441-445.

Chebyshev Approximation of the Second Kind of Modified Bessel Function of Order Zero

  • Received Date: 2002-12-17
  • Rev Recd Date: 2004-01-20
  • Publish Date: 2004-05-15
  • The second kind of modified Bessel function of order zero is the solutions of many problems in engineering. Modified Bessel equation is transformed by exponential transformation and expanded by J. P. Boyd's rational Chebyshev basis.
  • loading
  • [1]
    Amos D E.Computation of modified Bessel functions and their ratios[J].Math Comp,1974,28(24):239—251. doi: 10.1090/S0025-5718-1974-0333287-7
    [2]
    Campbell J B.Bessel functions In(z) and Kn(z) of real order and complex argument[J].Comput Phys Comm,1981,24(1):97—105. doi: 10.1016/0010-4655(81)90109-0
    [3]
    Gautschi W,Slavik J.On the computation of modified Bessel function ratios[J].Math Comp,1978,32(143):865—875. doi: 10.1090/S0025-5718-1978-0470267-9
    [4]
    Kerimov M K,Skorokhodov S L.Calculation of modified Bessel functions in the complex domain[J].U S S R Comput Math and Math Phys,1984,24(3):15—24. doi: 10.1016/0041-5553(84)90038-7
    [5]
    Segura J ,de Cordoba Fernandez P, Ratis Yu L.A code to evaluate modified Bessel functions based on the continued fraction method[J].Comput Phys Comm,1997,105(2/3):263—272. doi: 10.1016/S0010-4655(97)00069-6
    [6]
    Thompson I J,Barnett A R.Modified Bessel functions In(z) and Kn(z) of real order and complex argument,to selected accuracy[J].Comput Phys Comm,1987,47(4):245—257. doi: 10.1016/0010-4655(87)90111-1
    [7]
    Yoshida T,Ninomiya I.Computation of Bessel functions Kn(z) with complex argument by tau method[J].J Inform Process,1974,14(1):32—37.
    [8]
    Luke Y L.The Special Functions and Their Approximations[M].New York:Academic Press,1969.
    [9]
    Boyd J P.Orthogonal rational function on a semi-infinite[J].Journal of Computational Physics,1987,70:63—88. doi: 10.1016/0021-9991(87)90002-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2881) PDF downloads(946) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return