XU Jian, CHEN Yu-shu. Effects of Time Delayed Velocity Feedbacks on Self-Sustained Oscillator With Excitation[J]. Applied Mathematics and Mechanics, 2004, 25(5): 455-466.
Citation: XU Jian, CHEN Yu-shu. Effects of Time Delayed Velocity Feedbacks on Self-Sustained Oscillator With Excitation[J]. Applied Mathematics and Mechanics, 2004, 25(5): 455-466.

Effects of Time Delayed Velocity Feedbacks on Self-Sustained Oscillator With Excitation

  • Received Date: 2002-08-25
  • Rev Recd Date: 2003-12-06
  • Publish Date: 2004-05-15
  • Both the primary resonant solutions and their bifurcations due to time delayed velocity feedbacks used in a self-sustained oscillator with excitation were further investigated. A model was proposed by adding linear and nonlinear time delayed feedbacks to a representative non-autonomous system(with external forcing). The stablity condition of the linearized system at trivial equilibrium was discussed, which leads to a critical stability boundary where periodic solutions may occur. The main attention was focused on bifurcations from the primary resonant solutions. It is found that the stable primary resonant solution may appear periodically in the time delay. Meanwhile, the unstable regions for such solutions are also obtained, predicting the occurrence of quasi-periodic motions.
  • loading
  • [1]
    CHEN Yu-shu,XU Jian.Bifurcation in nonlinear systems with parametric excitation[J].Doklady Mathematics,1997,56(3):880—883.
    [2]
    Van der Pol B,Van der Mark J.Frequency demultiplication[J].Nature,1927,120(1):363—364. doi: 10.1038/120363a0
    [3]
    Wischert W,Wunderlin W,Pelster A,et al.Delay-induced instabilities in nonlinear feedback systems[J].Phys Rev E,1994,49(1):203—219. doi: 10.1103/PhysRevE.49.203
    [4]
    Tass P,Kurths J,Rosenblum M G,et al.Delay-induced transitions in visually guided movements[J].Phys Rev E,1996,54(3):R2224—R2227.
    [5]
    Nayfeh A H,Chin C M,Pratt J.Perturbation methods in nonlinear dynamics-applications to machining dynamics[J].J Manuf Sci Eng,1997,119(2):485—493. doi: 10.1115/1.2831178
    [6]
    LIAO Xiao-feng,YU Jeu-bang.Robust stability for interval Hopfield neutral networks with time delay[J].IEEE Trans N N,1998,9(5):1042—1046.
    [7]
    CAO Jin-de.Periodic oscillation and exponential stability of delayed CNNs[J].Phys Lett A,2000,270(3/4):157—163. doi: 10.1016/S0375-9601(00)00300-5
    [8]
    Wulf V,Ford N J.Numerical Hopf bifurcation for a class delay differential equations[J].J Comput Appl Math,2000,115(2):601—616. doi: 10.1016/S0377-0427(99)00181-8
    [9]
    YAO Wei-guang,YU Pei,Essex C.Delayed stochastic differential model for quiet standing[J].Phys Rev E,2001,63(2):021902—021904. doi: 10.1103/PhysRevE.63.021902
    [10]
    Reddy D V R,Sen A,Johnston G L.Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks[J].Physica D,2000,144(2):335—357. doi: 10.1016/S0167-2789(00)00086-5
    [11]
    Campbell S A,Bélair J,Ohira T,et al.Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback[J].Chaos,1995,5(4):640—645. doi: 10.1063/1.166134
    [12]
    Campbell S A,Bélair J,Ohira T,et al.Limit cycles, tori,and complex dynamics in a second-order differential equations with delayed negative feedback[J].J Dynamic Differential Equations,7(2):213—236.
    [13]
    Bélair J,Campbell S.A stability and bifurcations of equilibria in multiple-delayed differential equation[J].SIAM J Appl Math,1994,54(7):1402—1424. doi: 10.1137/S0036139993248853
    [14]
    XU Jian,LU Qi-shao.Hopf bifurcation of time-delay linear equations[J].Int J Bif Chaos,1999,9(5):939—951. doi: 10.1142/S0218127499000675
    [15]
    Cuomo K M,Oppenheim A V.Circuit implementation of synchronized chaos with applications to communications[J].Phys Rev Lett,1993,71(1):65—68. doi: 10.1103/PhysRevLett.71.65
    [16]
    Pyragas K.Continuous control of chaos by self-controlling feedback[J].Phys Lett A,1992,170(3):421—428. doi: 10.1016/0375-9601(92)90745-8
    [17]
    Gregory D V,Rajarshi R.Chaotic communication using time-delayed optical systems[J].Int J Bif Chaos,1999,9(10):2129—2156. doi: 10.1142/S0218127499001565
    [18]
    Nayfeh A H,Mook D T.Nonlinear Oscillations[M].New York:John Wiley & Sons,1979.
    [19]
    Ott E,Grebogi C,Yorke A.Controlling chaos[J].Phys Rev Lett,1990,64(5):1196—1199. doi: 10.1103/PhysRevLett.64.1196
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2884) PDF downloads(708) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return