LU Ying-jie, REN Ge-xue. A Symplectic Algorithm for the Dynamics of a Rigid Body[J]. Applied Mathematics and Mechanics, 2006, 27(1): 47-52.
Citation: LU Ying-jie, REN Ge-xue. A Symplectic Algorithm for the Dynamics of a Rigid Body[J]. Applied Mathematics and Mechanics, 2006, 27(1): 47-52.

A Symplectic Algorithm for the Dynamics of a Rigid Body

  • Received Date: 2004-05-14
  • Rev Recd Date: 2005-09-10
  • Publish Date: 2006-01-15
  • For the dynamics of a rigid body with a fixed point based on quaternion and the corresponding generalized momenta,a displacement_based symplectic integration scheme for differential_algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta.Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants.More importantly,the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations.
  • loading
  • [1]
    冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003,271—344.
    [2]
    Edward J Haug.Computer Aided Kinematics and Dynamics of Mechanical Systems[M].Needham Heights, Massachusetts, U S: Allyn and Bacon,1989,305—335.
    [3]
    CHEN Shan-shin,Daniel A Tortorelli.An energy-conserving and filtering method for stiff nonlinear multibody dynamics[J].Multibody System Dynamics,2003,10(4):341—362. doi: 10.1023/A:1026237902561
    [4]
    Elisabet V Lens,Alberto Cardona,Michel Geradin.Energy preserving time integration for constrained multibody systems[J].Multibody System Dynamics,2004,11(1):41—61. doi: 10.1023/B:MUBO.0000014901.06757.bb
    [5]
    Chen S,Tortorelli D A,Hansen J M.Unconditionally energy stable implicit time integration: Application to multibody system analysis and design[J].International Journal for Numerical Methods in Engineering,2000,48(6):791—822. doi: 10.1002/(SICI)1097-0207(20000630)48:6<791::AID-NME859>3.0.CO;2-Z
    [6]
    Simo J C,Tarnow N, Wong K.Exact energy-momentum conserving algorithms and sympectic schemes for nonlinear dynamics[J].Computer Methods in Applied Mechanics and Engineering,1992,100(1):63—116. doi: 10.1016/0045-7825(92)90115-Z
    [7]
    Channell P,Scovel C.Symplectic integration of Hamiltonian systems[J].Nonlinearity,1990,3(2):231—259. doi: 10.1088/0951-7715/3/2/001
    [8]
    Leimkuhler B,S Reich.Symplectic integration of constrained Hamiltonian systems[J].Math Comp,1994,63(208):589—605. doi: 10.1090/S0025-5718-1994-1250772-7
    [9]
    Barth E,Leimkuhler B.Symplectic methods for conservative multibody systems[A].In:Mardsen J E,Patrick G W,Shadwick W F.Integration Algorithms for Classical Mechanics, Fields Institute Communications[C].U S:American Mathematical Society,1996,25—43.
    [10]
    Leimkuhler B,Skeel R D.Symplectic numerical integrators in constrained Hamiltonian systems[J].J Comp Phys,1994,112(1):117—125. doi: 10.1006/jcph.1994.1085
    [11]
    Baumgarte J W.A new method of stabilization for holonomic constraints[J].ASME Journal of Applied Mechanics,1983,50(4):869—870. doi: 10.1115/1.3167159
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3529) PDF downloads(1488) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return