JIAN Yong-jun, E Xue-quan, ZHANG Jie. Capillary Effect on the Vertically Excited Surface Wave in a Circular Cylindrical Vessel[J]. Applied Mathematics and Mechanics, 2006, 27(2): 204-210.
Citation: JIAN Yong-jun, E Xue-quan, ZHANG Jie. Capillary Effect on the Vertically Excited Surface Wave in a Circular Cylindrical Vessel[J]. Applied Mathematics and Mechanics, 2006, 27(2): 204-210.

Capillary Effect on the Vertically Excited Surface Wave in a Circular Cylindrical Vessel

  • Received Date: 2004-06-09
  • Rev Recd Date: 2005-08-17
  • Publish Date: 2006-02-15
  • In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension. A nonlinear slowly varying amplitude equation, which incorporates cubic nonlinear term, external excitation and the influence of surface tension, was derived from potential flow equation. The results show that when forced frequency is lower, the effect of surface tension on mode selection of surface wave is not important. However, when forced frequency is higher, the surface tension can not be neglected. This proved that the surface tension causes free surface returning to equilibrium location. In addition, due to considering the effect of surface tension, the theoretical result much more approaches to experimental results than that of no surface tension.
  • loading
  • [1]
    Zhang W, Vial J.Pattern formation in weakly damped parametric surface waves[J].J Fluid Mech,1997,336(7):301—330. doi: 10.1017/S0022112096004764
    [2]
    Ciliberto S, Gollub J P.Chaotic mode competition in parametrically forced surface waves[J].J Fluid Mech,1985,158(17):381—398. doi: 10.1017/S0022112085002701
    [3]
    Kudrolli A,Gollub J P.Pattern and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio[J].Physica D,1996,97(1):113—154.
    [4]
    Pushkarev A N.Turbulence of capillary waves[J].Phys Rev Lett,1996,76(18):3320—3323. doi: 10.1103/PhysRevLett.76.3320
    [5]
    E Xue-quan,GAO Yu-xin.Ordered and chaotic modes of surface wave patterns in a vertically oscillating fluid[J].Communications in Nonlinear Sciences & Numerical Simulation,1996,1(2):1—6.
    [6]
    E Xue-quan,GAO Yu-xin.Visualization of surface wave patterns of a fluid in vertical vibration[A].In:WEI Qing-ding Ed.Proceedings of the Fourth Asian Symposium on Visualization[C].Beijing:International Academic Publishers,1996,653—658.
    [7]
    高宇欣,鄂学全.微幅振荡流体表面波图谱显示方法[J].实验力学,1998,13(3):326—333.
    [8]
    菅永军,鄂学全,柏威.参数激励圆柱形容器中的非线性Faraday波[J].应用数学和力学,2003,24(10):1057—1068.
    [9]
    菅永军,鄂学全.垂直激励圆柱形容器中的表面波结构[J].水动力学研究与进展,2003,18(2):135—147.
    [10]
    菅永军.垂直激励圆柱形容器中的非线性表面波及其不稳定性研究[D].博士学位论文.北京:中国科学院力学研究所,2003,50—61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2715) PDF downloads(522) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return