Citation: | QIN Mao-chang, MEI Feng-xiang, XU Xue-jun. Nonclassical Potential Symmetries and Invariant Solutions of Heat Equation[J]. Applied Mathematics and Mechanics, 2006, 27(2): 217-222. |
[1] |
Olver P J.Applications of Lie Groups to Differential Equations[M].New York:Springer-Verlag,1996.
|
[2] |
Ibragimov N H.Transformation Groups Applied to Mathematical Physics[M].New York:Springer-Verlag,1987.
|
[3] |
Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer-Verlag,1989.
|
[4] |
Ovsiannikov L V.Group Analysis of Differential Equations[M].New York:Academic,1989.
|
[5] |
Bluman G W,Cole J D.The general similarity solutions of the heat equation[J].Journal of Mathematics and Mechanics,1969,18(5):1025—1042.
|
[6] |
Bluman G W,Kumei S.New classes of symmetries for partial differential equation[J].Journal of Mathematical Physics,1988,29(4):806—811. doi: 10.1063/1.527974
|
[7] |
Johnpiliai A G,Kara A H.Nonclassical potential symmetry generators of differential equations[J].Nonlinear Dynamics,2002,30(2):167—177. doi: 10.1023/A:1020498600432
|
[8] |
Gandaries M L.Nonclassical potential symmetries of the Burgers equation[A].In:Shkil M,Nikitin A,Boyko V Eds.Symmetry in Nonlinear Mathematical Physics[C].Vol 1.Klev:Institute of Mathematics of NAS of Ukraine,1997,130—137.
|