HE Xiao-ting, CHEN Shan-lin. Biparametric Perturbation Solutions of the Large Deflection Problem of Cantilever Beams[J]. Applied Mathematics and Mechanics, 2006, 27(4): 404-410.
Citation:
HE Xiao-ting, CHEN Shan-lin. Biparametric Perturbation Solutions of the Large Deflection Problem of Cantilever Beams[J]. Applied Mathematics and Mechanics, 2006, 27(4): 404-410.
HE Xiao-ting, CHEN Shan-lin. Biparametric Perturbation Solutions of the Large Deflection Problem of Cantilever Beams[J]. Applied Mathematics and Mechanics, 2006, 27(4): 404-410.
Citation:
HE Xiao-ting, CHEN Shan-lin. Biparametric Perturbation Solutions of the Large Deflection Problem of Cantilever Beams[J]. Applied Mathematics and Mechanics, 2006, 27(4): 404-410.
Biparametric Perturbation Solutions of the Large Deflection Problem of Cantilever Beams
Received Date: 2004-09-11
Rev Recd Date:
2005-12-13
Publish Date:
2006-04-15
Abstract
The large deflection problem of cantilever beams was studied by means of the biparametric perturbation method and the first order derivative substitution from pseudolinear analysis approach.This kind of substitution can transform the basic equation,an integral differential equation into a nonlinear algebraic ones thus simplify computational process.Compared with the present results,it indicates that the large deflection problem solved by using pseudolinear analysis can lead to simple and precise results.
References
[1]
钱伟长.宁波甬江大桥的大挠度非线性计算问题[J].应用数学和力学,2002,23(5):441—451.
[2]
Fertis D G.Nonlinear Mechanics[M].US: CRC Press LLC, 1999.
[3]
何晓婷,陈山林.悬臂梁大挠度问题的摄动解[J].重庆建筑大学学报,2003,25(6):46—51.
[4]
Nayfeh A H.Introduction to Perturbation Techniques[M].US: John Wiley & Sons, 1981.
[5]
Nayfeh A H.Problems in Perturbation[M].US: John Wiley & Sons,1985.
[6]
Fertis D G,Afonta A O.Equivalent systems for large deformation of beams of any stiffness variation[J].Eur J Mech A/Solid,1991,10(3):265.
[7]
Frisch-Fay R.Flexible Bars[M].Washington,D C:Butterworth,1962.
[8]
Gere J M,Timoshenko S P.Mechanics of Materials[M].3rd Ed.Boston:PWS-Kent,1990,514.
Relative Articles
[1] SHI Meijiao, XU Huidong, ZHANG Jianwen. Non-Smooth Grazing Dynamics for Cantilever Beams With Bilateral Elastic Constraints [J]. Applied Mathematics and Mechanics, 2022, 43(6): 619-630. doi: 10.21656/1000-0887.420177
[2] TIAN Yaozong, JIAN Kailin. Lateral Vibration Analysis of Axially Moving Beams [J]. Applied Mathematics and Mechanics, 2019, 40(10): 1081-1088. doi: 10.21656/1000-0887.400082
[3] HU Ming-yong, WANG An-wen, ZHANG Xiang-ming. Approximate Analytical Solutions and Experimental Analysis of Transient Response of Constrained Damping Cantilever Beam [J]. Applied Mathematics and Mechanics, 2010, 31(11): 1287-1296. doi: 10.3879/j.issn.1000-0887.2010.11.003
[4] YANG Xiao, WANG Chen. Nonlinear Mathematical Model for Large Deflection of Incompressible Saturated Poroelastic Beams [J]. Applied Mathematics and Mechanics, 2007, 28(12): 1417-1424.
[5] HOU Chao-sheng, ZHANG Shou-kai, LIN Feng. Cublic Spline Solutions of Axisymmetrical Nonlinear Bending and Buckling of Circular Sandwich Plates [J]. Applied Mathematics and Mechanics, 2005, 26(1): 120-126.
[6] CHIEN Wei-zang. Second Order Approximation Solution of Nonlinear Large Deflection Problem of Yongjiang Railway Bridge in Ningbo [J]. Applied Mathematics and Mechanics, 2002, 23(5): 441-451.
[7] Huang Yan, Tang Guojin. Nonlinear Deformation Theory of Thin Shell [J]. Applied Mathematics and Mechanics, 2000, 21(6): 610-616.
[8] LIU Yan-qiang. Method of Equilibrium Differential Equation for Analysis of Strength of Large Deflection Drill String [J]. Applied Mathematics and Mechanics, 2000, 21(11): 1165-1171.
[9] Pan Jia-qing. The Second Initial-Boundary Value Problem for a Quasilinear Prabolic Equations With Nonlinear Boundary Conditions [J]. Applied Mathematics and Mechanics, 2000, 21(11): 1201-1207.
[10] Gan Hong. Numerical Analysis of theLarge Deflection of an Elastic-Plastic Beam [J]. Applied Mathematics and Mechanics, 2000, 21(6): 633-639.
[11] Yin Bangxin. Iterative Method on Large Deflection Nonlinear Problem of Laminated Composite Shallow Shells and Plates [J]. Applied Mathematics and Mechanics, 1999, 20(7): 721-728.
[12] Qian Rengji. A Modified Hellinger-Reissner Variational Functional Including only Two Independent Variables for Large Displacement of Thin Shallow Shell [J]. Applied Mathematics and Mechanics, 1997, 18(7): 617-624.
[13] Wang Jiaxin, Liu Jie. Large Deflection Problem of Thin Orthotropic Circular Plate on Elastic Foundation with Variable Thickness under Uniform Pressure [J]. Applied Mathematics and Mechanics, 1996, 17(5): 455-463.
[14] Cai Zong-xi. Fundamental Equations of Large Spatial Deflection Problems of Rods and Its Application to Drilling Engineering [J]. Applied Mathematics and Mechanics, 1993, 14(12): 1049-1056.
[15] Ji Zhen-yi, Yeh Kai-yuan. General Solution for Large Deflection Problems of Nonhomogeneous Circular Plates on Elastic Foundation [J]. Applied Mathematics and Mechanics, 1992, 13(11): 951-962.
[16] Chien Wei-zang, Pan Li-zhou, Liu Xiao-ming. Large Deflection Problem of a Clamped Elliptical Plate Subjected to Uniform Pressure [J]. Applied Mathematics and Mechanics, 1992, 13(10): 857-871.
[17] He Qing, Ji Chun-ci. The Existence of Solution of a Class of Two-Order Quasilinear Boundary Value Problem [J]. Applied Mathematics and Mechanics, 1992, 13(10): 941-944.
[18] Dai Shi-qiang. On the Method of Orthogonality Conditions for Solving the Problem of Large Deflection of Circular Plate [J]. Applied Mathematics and Mechanics, 1991, 12(7): 579-586.
[19] Su Xu-min, Zhao Zu-wu. Large Deflection Analysis of Rectangular Plates by Combined Perturbation and Finite Strip Method [J]. Applied Mathematics and Mechanics, 1991, 12(1): 51-54.
[20] Luan Feng, Yu Tong-xi. An Analysis of the Large Deflection of an Elastic-Plastic Cantilever Subjected to an Inclined Concentrated Force [J]. Applied Mathematics and Mechanics, 1991, 12(6): 515-522.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 17.0 % FULLTEXT : 17.0 % META : 82.0 % META : 82.0 % PDF : 1.0 % PDF : 1.0 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 4.5 % 其他 : 4.5 % China : 2.5 % China : 2.5 % Italy : 0.2 % Italy : 0.2 % Riverview : 0.1 % Riverview : 0.1 % Singapore : 0.1 % Singapore : 0.1 % 上海 : 1.2 % 上海 : 1.2 % 北京 : 1.4 % 北京 : 1.4 % 南京 : 0.1 % 南京 : 0.1 % 南宁 : 0.1 % 南宁 : 0.1 % 呼和浩特 : 0.1 % 呼和浩特 : 0.1 % 哥伦布 : 0.3 % 哥伦布 : 0.3 % 宣城 : 0.4 % 宣城 : 0.4 % 弗吉 : 0.1 % 弗吉 : 0.1 % 张家口 : 2.7 % 张家口 : 2.7 % 无锡 : 0.3 % 无锡 : 0.3 % 杭州 : 0.3 % 杭州 : 0.3 % 武汉 : 0.1 % 武汉 : 0.1 % 洛杉矶 : 0.4 % 洛杉矶 : 0.4 % 深圳 : 0.2 % 深圳 : 0.2 % 温州 : 0.1 % 温州 : 0.1 % 石家庄 : 0.2 % 石家庄 : 0.2 % 芒廷维尤 : 6.1 % 芒廷维尤 : 6.1 % 芝加哥 : 0.1 % 芝加哥 : 0.1 % 苏州 : 0.1 % 苏州 : 0.1 % 葫芦岛 : 0.2 % 葫芦岛 : 0.2 % 西宁 : 76.6 % 西宁 : 76.6 % 西安 : 0.1 % 西安 : 0.1 % 西雅图 : 0.1 % 西雅图 : 0.1 % 郑州 : 0.5 % 郑州 : 0.5 % 重庆 : 0.1 % 重庆 : 0.1 % 长沙 : 0.1 % 长沙 : 0.1 % 阳泉 : 0.6 % 阳泉 : 0.6 % 其他 China Italy Riverview Singapore 上海 北京 南京 南宁 呼和浩特 哥伦布 宣城 弗吉 张家口 无锡 杭州 武汉 洛杉矶 深圳 温州 石家庄 芒廷维尤 芝加哥 苏州 葫芦岛 西宁 西安 西雅图 郑州 重庆 长沙 阳泉