Muhammet Yürüsoy. Similarity Solutions of Boundary Layer Equations for a Special Non-Newtonian Fluid in a Special Coordinate System[J]. Applied Mathematics and Mechanics, 2004, 25(5): 535-541.
Citation: Muhammet Yürüsoy. Similarity Solutions of Boundary Layer Equations for a Special Non-Newtonian Fluid in a Special Coordinate System[J]. Applied Mathematics and Mechanics, 2004, 25(5): 535-541.

Similarity Solutions of Boundary Layer Equations for a Special Non-Newtonian Fluid in a Special Coordinate System

  • Received Date: 2002-10-31
  • Publish Date: 2004-05-15
  • Two dimensional equations of steade motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phi-coordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The out come, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation, assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By using Lie group methods, infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.
  • loading
  • [1]
    Acrivos A,Shah M J,Petersen E E.Momentum and heat transfer in laminar boundary layer flows of non-Newtonian fluids past external surface[J].A I Ch E Jl,1960,6:312—317. doi: 10.1002/aic.690060227
    [2]
    Pakdemirli M.Boundary layer flow of power-law past arbitrary profile[J].IMA Journal of Applied Mathematics,1993,50:133—148. doi: 10.1093/imamat/50.2.133
    [3]
    Beard D W,Walters K.Elastico-viscous boundary layer flows[J].Proc Camb Phil,1964,60:667—674. doi: 10.1017/S0305004100038147
    [4]
    Astin J,Jones R S,Lockyer P.Boundary layer in non-Newtonian fluids[J].J Mec,1973,12:527—539.
    [5]
    Pakdemirli M.Conventional and multiple deck boundary layer approach to second and third grade fluids[J].Internat J Engng Sci,1994,32(1):141—154. doi: 10.1016/0020-7225(94)90156-2
    [6]
    Yürüsoy M,Pakdemirli M.Exact solutions of boundary layer equations of a special non-Newtonian fluid over a stretching sheet[J].Mechanics Research Communications,1999,26(2):171—175. doi: 10.1016/S0093-6413(99)00009-9
    [7]
    Kaplun S.The role of coordinate systems in boundary layer theory[J].ZAMP,1954,5:111—135. doi: 10.1007/BF01600771
    [8]
    Kevorkian J,Cole J D.Perturbation Method in Applied Mathematics[M].New York:Springer,1981.
    [9]
    Pakdemirli M,Suhubi E S.Boundary layer theory second order fluids[J].Int J Engng Sci,1992,30(4):523—532. doi: 10.1016/0020-7225(92)90042-F
    [10]
    Pakdemirli M,Suhubi E S.Similarity solutions of boundary layer equations for second order fluids[J].Int J Engng Sci,1992,30(5):611—629. doi: 10.1016/0020-7225(92)90006-3
    [11]
    Pakdemirli M.The boundary layer equations of third-grade fluids[J].Int J Non-Linear Mech,1992,27(5):785—793. doi: 10.1016/0020-7462(92)90034-5
    [12]
    Fosdick R L,Rajagopal K R.Thermodynamics and stability of fluids of third grade[J].Proc R Soc,1980,339:351.
    [13]
    Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer,1989.
    [14]
    Stephani H.Differential Equations:Their Solution Using Symmetries[M].England:Cambrideg Univeristy Press,1989.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2818) PDF downloads(766) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return