XU Jian, YANG Qian-biao. Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅰ)[J]. Applied Mathematics and Mechanics, 2006, 27(7): 819-824.
Citation: XU Jian, YANG Qian-biao. Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅰ)[J]. Applied Mathematics and Mechanics, 2006, 27(7): 819-824.

Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅰ)

  • Received Date: 2004-05-25
  • Rev Recd Date: 2006-03-01
  • Publish Date: 2006-07-15
  • The Newtonian method is employed to obtain nonlinear mathematical model of motion of a horizontally cantilevered and inflexible pipe conveying fluid. The order magnitudes of relevant physical parameters are analyzed qualitatively to establish a foundation on the further study of the model. The method of multiple scales is used to obtain eigenfunctions of the linear free-vibration modes of the pipe. The boundary conditions yield the characteristic equations from which eigenvalues can be derived. It is found that flow velocity in the pipe may induced the 3:1, 2:1 and 1:1 internal resonances between the first and second modes such that the mechanism of flow-induced internal resonances in the pipe under consideration is explained theoretically. The 3:1 internal resonance first occurs in the system and is, thus, the most important since it corresponds to the minimum critical velocity.
  • loading
  • [1]
    Long R H. Experimental and theoretical study of trans-verse vibration of a tube containing flowing fluid[J].Journal of Applied Mechanics,1955,77(1):65—68.
    [2]
    Handelman G H. A note on the transverse vibration of a tube containing flowing fluid[J].Quarterly of Applied Mathematics,1955,13(3):326—330.
    [3]
    Naguleswaran S, Williams C J H.Lateral vibrations of a pipe conveying a fluid[J].Journal of Mechanical Engineering Science,1968,10(2):228—238. doi: 10.1243/JMES_JOUR_1968_010_035_02
    [4]
    Stein R A, Torbiner W M. Vibrations of pipes containing flowing fluids[J].Journal of Applied Mechanics,1970,37(6):906—916. doi: 10.1115/1.3408717
    [5]
    Padoussis M P, Laithier B E. Dynamics of Timoshenko beams conveying fluid[J].Journal of Mechanical Engineering Science,1976,18(2):210—220. doi: 10.1243/JMES_JOUR_1976_018_034_02
    [6]
    Padoussis M P, Luu T P, Laithier B E. Dynamics of finite-length tubular beams conveying fluid[J].Journal of Sound and Vibration,1986,106(2):311—331. doi: 10.1016/0022-460X(86)90321-4
    [7]
    Lee U, Pak C H, Hong S C.The dynamics of piping system with internal unsteady flow[J].Journal of Sound and Vibration,1995,180(2):297—311. doi: 10.1006/jsvi.1995.0080
    [8]
    Holmes P J. Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis[J].Journal of Sound and Vibration,1977,53(4):471—503. doi: 10.1016/0022-460X(77)90521-1
    [9]
    Rousselet J, Herrmann G. Dynamic behaviour of continuous cantilevered pipes conveying fluid near critical velocities[J].Journal of Applied Mechanics,1981,48(6):943—947. doi: 10.1115/1.3157760
    [10]
    Padoussis M P, Li G X. Pipes conveying fluid: a model dynamical problem[J].Journal of Fluid and Structures,1993,7(2):137—204. doi: 10.1006/jfls.1993.1011
    [11]
    黄玉盈,邹时智,徐鉴,等.输液管的非线性振动、分叉与混沌—现状与展望[J].力学进展,1998,28(1):30—42.
    [12]
    徐鉴,杨前彪.输液管模型及其非线性动力学近期研究进展[J].力学进展,2004,34(2):1—13.
    [13]
    Semler C,Li X, Padoussis M P.The non-linear equations of motion of pipes conveying fluid[J].Journal of Sound and Vibration,1994,169(3):577—599. doi: 10.1006/jsvi.1994.1035
    [14]
    Padoussis M P.Fluid-Structure Interactions: Slender Structures and Axial Flow[M].San Diego: Academic Press, 1998.
    [15]
    Ryu S U, Sugiyama Y, Ryu B J. Eigenvalue branches and modes for flutter of cantileverd pipes conveying fluid[J].Computers and Structures,2002,80(14/15):1231—1241. doi: 10.1016/S0045-7949(02)00083-4
    [16]
    Seyranian A P. Collision of eigenvalues in linear oscillatory systems[J].PMM-Journal of Applied Mathematics and Mechanics,1994,58(5):805—13. doi: 10.1016/0021-8928(94)90005-1
    [17]
    XU Jian,CHUNG Kwow-wai,CHAN HENRY Shui-ying.Co-dimension 2 bifurcation and chaos in cantilevered pipe conveying time varying fluid with three-to-one in internal resonances[J].Acta Mechanics Solid Sinica,2003,6(3):245—255.
    [18]
    徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J].应用数学和力学,2006,27(7):825—832.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2789) PDF downloads(748) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return