MA Jun-hai, CHEN Yu-shu, XIN Bao-gui. Study on Prediction Methods for Dynamic Systems of Nonlinear Chaotic Time Series[J]. Applied Mathematics and Mechanics, 2004, 25(6): 551-557.
Citation: MA Jun-hai, CHEN Yu-shu, XIN Bao-gui. Study on Prediction Methods for Dynamic Systems of Nonlinear Chaotic Time Series[J]. Applied Mathematics and Mechanics, 2004, 25(6): 551-557.

Study on Prediction Methods for Dynamic Systems of Nonlinear Chaotic Time Series

  • Received Date: 2002-04-09
  • Rev Recd Date: 2003-12-23
  • Publish Date: 2004-06-15
  • The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions. By combining neural networks and wavelet theories, the structures of wavelet transform neural networks were studied and also a wavelet neural networks learning method was given. Based on wavelet networks, a new method for parameter identification was suggested, which can be used selectively to extract different scales of frequency and time in time series in order to realize prediction of tendencies or details of original time series. Through pre-treatment and comparison of results before and after the treatment, several useful conclusions are reached: High accurate identification can be guaranteed by applying wavelet networks to identify parameters of self-related chaotic models and more valid prediction of the chaotic time series including noise can be achieved accordingly.
  • loading
  • [1]
    LIANG Yue-cao,HOGN Yi-guang,FANG Hai-ping,et al.Predicting chaotic time series with wavelet networks[J].Phys D,1995,85(8):225—238. doi: 10.1016/0167-2789(95)00119-O
    [2]
    ZHANG Qing-hua. Wavelet Networks[J].IEE Transactions on Neural Networks,1992,11(6):889—898.
    [3]
    Castillo E,Gutierrez J M. Nonlinear time series modeling and prediction using functional networks extracting information masked by chaos[J].Phys Lett A,1998,244(5):71—84. doi: 10.1016/S0375-9601(98)00312-0
    [4]
    Judd Kevin,Alistair Mess. Embedding as a modeling problem[J].Phys D,1998,120(4):273—286. doi: 10.1016/S0167-2789(98)00089-X
    [5]
    Schroer Christian G,Sauer Tim,Ott Edward,et al.Predicting chaotic most of the time from embeddings with self-intersections[J].Phys Rev Lett,1998,80(7):1410—1412. doi: 10.1103/PhysRevLett.80.1410
    [6]
    Chon Ki H.Detection of chaotic determinism in time series from randomly forced maps[J].Phys D,1997,99(5):471—486. doi: 10.1016/S0167-2789(96)00159-5
    [7]
    Kitoh Satoshi,Kimura Mahito,Mori Takao,et al. A fundamental bias in calculating dimension from finite data sets[J].Phys D,2000,141(10):171—182. doi: 10.1016/S0167-2789(00)00050-6
    [8]
    马军海,陈予恕,刘曾荣.动力系统实测数据的非线性混沌模型重构[J].应用数学和力学,1999,20(11):1128—1134.
    [9]
    马军海,陈予恕.低维混沌时序非线性动力系统的预测方法及其应用研究[J].应用数学和力学,2001,22(5):441—448.
    [10]
    马军海,陈予恕,刘曾荣.不同随机分布的相位随机化对实测数据影响的分析研究[J].应用数学和力学,1998,19(11):955—964.
    [11]
    马军海,陈予恕,刘曾荣.动力系统实测数据的Lyapunov指数的矩阵算法[J].应用数学和力学,1999,20(9):919—927.
    [12]
    马军海,陈予恕.混沌时序相空间重构的分析和应用研究[J].应用数学和力学,2000,21(11):1237—1245.
    [13]
    马军海,陈予恕,刘曾荣. 动力系统实测数据的非线性混沌特性的判定[J]. 应用数学和力学1998,19(6):481—488.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2868) PDF downloads(645) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return