HU Man-feng, XU Zhen-yuan. Spatio-Temporal Chaotic Synchronization for Modes Coupled Two Ginzburg-Landau Equations[J]. Applied Mathematics and Mechanics, 2006, 27(8): 1001-1008.
Citation: HU Man-feng, XU Zhen-yuan. Spatio-Temporal Chaotic Synchronization for Modes Coupled Two Ginzburg-Landau Equations[J]. Applied Mathematics and Mechanics, 2006, 27(8): 1001-1008.

Spatio-Temporal Chaotic Synchronization for Modes Coupled Two Ginzburg-Landau Equations

  • Received Date: 2004-08-17
  • Rev Recd Date: 2006-02-24
  • Publish Date: 2006-08-15
  • On the basis of numerical computation,the conditions of the modes coupling were proposed.The high-frequency modes are coupled,but the low frequency modes are uncoupled.It was proved that the existence of an absorbing set and a global finite dimensional attractor which is compact,connected in the function space for the high-frequency modes coupled two Ginzburg-Landau equations(MGLE).The trajectory of driver equation may be spatio-temporal chaotic.One associats with MGLE,a truncated form of the equations.The prepared equations will persist in long time dynamical behavior of MGLE.MGLE possess the squeezing properties under some conditions.It was proved that the complete spatio-temporal chaotic synchronization for MGLE can occur.Synchronization phenomenon of infinite dimensional dynamical system(IFDDS) was illustrated on the mathematical theory qualitatively.The method is different from Liapunov function methods and approximate linear methods.
  • loading
  • [1]
    Pecora L M,Corrol T L.Synchronization in chaotic in chaotic systems[J].Phys Rev Lett,1990,64(8):821—824. doi: 10.1103/PhysRevLett.64.821
    [2]
    Abarbane H D,Rulkov N F,Sushchik M M.Generalized synchronization of chaos:the auxiliary system approach[J].Phys Rev E,1996,53(5):4528—4533. doi: 10.1103/PhysRevE.53.4528
    [3]
    Maistrenko Y,Kapitaniak T.Different type of chaos synchronization in two coupled piecewise linear maps[J].Phys Rev E,1999,54(4):3285—3289.
    [4]
    Codreanu S.Synchronization of spatiotemporal nonlinear dynamical systems by an active control[J].Chaos Solitons Fractals,2003,15(3):507—510. doi: 10.1016/S0960-0779(02)00128-5
    [5]
    Duane G S, Tribbia J J. Synchronized chaos in geophysic dynamics[J]. Phys Rev Lett,2001,86(19):4298—4301. doi: 10.1103/PhysRevLett.86.4298
    [6]
    Wei G W.Synchronization of single-side locally averaged adaptive coupling and its application to shock capturing[J].Phys Rev Lett,2001,86(16):3542—3545. doi: 10.1103/PhysRevLett.86.3542
    [7]
    Wu S G,He K F,Huang Z G.Controlling spatio-temporal chaos via small external forces[J].Phys Lett A,1999,260(5):345—351. doi: 10.1016/S0375-9601(99)00539-3
    [8]
    Junge L ,Parlitz U. Phase synchronization of coupled Ginzburg-Landau equations[J].Phys Rev E,2000,62(1):438—441. doi: 10.1103/PhysRevE.62.438
    [9]
    Temam R.Infinite Dimensional System in Mechanics and Physics Applied Mathematics Series[M].New York:Springer-Verlag,1988.
    [10]
    Li Y, Mclaughlin D W Q,Shatan J,et al.Persistent homoclinic orbits for perturbed nonlinear Schrodinger equations[J].Comm Pure Appl Math,1996,49(1):1175—1255. doi: 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.0.CO;2-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2486) PDF downloads(622) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return