DING Xie-ping. Nonempty Intersection Theorems and System of Generalized Vector Equilibrium Problems in Product G-Convex Spaces[J]. Applied Mathematics and Mechanics, 2004, 25(6): 563-571.
Citation: DING Xie-ping. Nonempty Intersection Theorems and System of Generalized Vector Equilibrium Problems in Product G-Convex Spaces[J]. Applied Mathematics and Mechanics, 2004, 25(6): 563-571.

Nonempty Intersection Theorems and System of Generalized Vector Equilibrium Problems in Product G-Convex Spaces

  • Received Date: 2002-08-29
  • Rev Recd Date: 2003-12-05
  • Publish Date: 2004-06-15
  • By using an existence theorems of maximal elements for a family of set-valued mappings in G-convex spaces due to the author, some new nonempty intersection theorems for a family of set-valued mappings were established in noncompact product G-convex spaces. As applications, some equilibrium existence theorems for a system of generalized vector equilibrium problems were proved in noncompact product G-convex spaces. These theorems unify, improve and generalize some important known results in literature.
  • loading
  • [1]
    Giannessi F. Theorems of alternative, quadratic programs and complementarity problems[A].In:R W Cottle, F Giannessi,J -L Lions Eds.Variational Inequalities and Complementarity Problems[C].New York:J Wiley Sons,1980,151—186.
    [2]
    Giannessi F.Vector Variational Inequalities and Vector Equilibria Mathematics Theories[M].London:Kluwer Academic Publishers,2000.
    [3]
    Pang J S.Asymmetric variational inequality problems over product sets: applications and iterative methods[J].Math Programming,1985,31(2):206—219. doi: 10.1007/BF02591749
    [4]
    Zhu D L, Marcotte P. Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities[J].SIAM J Optim,1996,6(3):714—726. doi: 10.1137/S1052623494250415
    [5]
    Cohen G, Chaplais F. Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms[J]. J Optim Theory Appl,1988,59(2):360—390.
    [6]
    Ansari Q H, Yao J C. A fixed point theorem and its applications to a system of variational inequalities[J].Bull Austral Math Soc,1999,59(2):433—442. doi: 10.1017/S0004972700033116
    [7]
    Ansari Q H, Yao J C. System of generalized variational inequalities and their applications[J].Appl Anal,2000,76(3/4): 203—217. doi: 10.1080/00036810008840877
    [8]
    Ansari Q H, Schaible S, Yao J C. System of vector equilibrium problems and their applications[J].J Optim Theory Appl,2000,107(3):547—557. doi: 10.1023/A:1026495115191
    [9]
    Ding X P,Park J Y. Fixed points and generalized vector equilibrium problems in G-convex spaces[J].Indian J Pure Appl Math,2003,34(6):973—990.
    [10]
    DING Xie-ping,Park J Y. Generalized vector equilibrium problems in generalized convex space[J].J Optim Theory Appl,2004,120(2):327—353. doi: 10.1023/B:JOTA.0000015687.95813.a0
    [11]
    Ansari Q H, Yao J C. An existence result for the generalized vector equilibrium problem[J].Appl Math Lett,1999,12(8):53—56.
    [12]
    Oettli W,SchlAa¨ger D. Existence of equilibria for g-monotone mappings[A].In:W Takahashi,T Tanaka Eds.Nonlinear Analysis and Convex Analysis[C].Singapore:World Scientific Pub,1999,26—33.
    [13]
    Lin L J, Yu Z T. Fixed-point theorems and equilibrium problems[J].Nonlinear Anal,2001,43:987—999. doi: 10.1016/S0362-546X(99)00202-3
    [14]
    丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅰ)[J].应用数学和力学,2003,24(6):583—594.
    [15]
    丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅱ)[J].应用数学和力学,2003,24(9):899—905.
    [16]
    Park S, Kim H. Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173—187. doi: 10.1006/jmaa.1996.0014
    [17]
    Park S, Kim H. Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(3):551—571. doi: 10.1006/jmaa.1997.5388
    [18]
    Park S. Continuous selection theorems for admissible multifunctions on generalized convex spaces[J].Numer Funct Anal Optimiz,1999,25(3):567—583.
    [19]
    Park S. Fixed points of admissible maps on generalized convex spaces[J].J Korean Math Soc,2000,37(4):885—899.
    [20]
    Tan K K, Zhang X L. Fixed point theorems on G-convex spaces and applications[J].Proc Nonlinear Funct Anal Appl,1996,1:1—19.
    [21]
    Deguire P, Tan K K, Yuan X Z. The study of maximal elements,fixed points for LS-majorized mappings and their applications to minimax and variational inequalities in product topological spaces[J].Nonlinear Anal,1999,37:933—951. doi: 10.1016/S0362-546X(98)00084-4
    [22]
    Park S,Kim H, Coincidence theorems on a product of generalized convex spaces and applications to equilibria[J].J Korean Math Soc,1999, 36(4):813—828.
    [23]
    Aubin J P, Ekeland I. Applied Nonlinear Analysis[M].New York:John Wiley & Sons,1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2573) PDF downloads(740) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return