| Citation: | ZHANG Shi-sheng. Multi-Valued Quasi Variational Inclusions in Banach Spaces[J]. Applied Mathematics and Mechanics, 2004, 25(6): 572-580. | 
 
	                | [1] | Noor M A.Set-valued quasi variational inequalities[J].K J Comput Appl Math,2000,7:101—113. | 
| [2] | Noor M A.Three-step approximation schemes for multivalued quasi variational inclusions[J].Nonlinear Funct Anal Appl,2001,6(3):383—394. | 
| [3] | Noor M A.Two-step approximation schemes for multivalued quasi variational inclusions[J].Nonlinear Funct Anal Appl,2002,7(1):1—14. | 
| [4] | Noor M A.Multivalued quasi variational inclusions and implicit resolvent equations[J].Nonlinear Anal TMA,2002,48(2):159—174. doi:  10.1016/S0362-546X(00)00177-2 | 
| [5] | Chang S S,Cho Y J,Lee B S,et al.Generalized set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,246:409—422. doi:  10.1006/jmaa.2000.6795 | 
| [6] | Chang S S.Set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2000,248:438—454. doi:  10.1006/jmaa.2000.6919 | 
| [7] | Chang S S,Kim J K,Kim K H.On the existence and iterative approximation problems of solutions for set-valued variational inclusions in Banach spaces[J].J Math Anal Appl,2002,268:89—108. doi:  10.1006/jmaa.2001.7800 | 
| [8] | Barbu V.Nonlinear Semigroups and Differential Equations in Banach Spaces[M].Leyden:Noordhaff,1979. | 
| [9] | Noor M A. Generalized set-valued variational inclusions and resolvent equations[J]. J Math Anal Appl,1998,228:206—220. doi:  10.1006/jmaa.1998.6127 | 
| [10] | Chang S S.Some problems and results in the study of nonlinear analysis[J].Nonlinear Anal TMA,1997,30:4197—4208. doi:  10.1016/S0362-546X(97)00388-X | 
| [11] | Nadler S B.Multi-valued contraction mappings[J].Pacific J Math,1969,30:475—488. | 
| [12] | Noor M A.Some algorithms for general monotone mixed variational inequalities[J].Math Computer Modelling,1999,29(7):1—7. | 
| [13] | Uko L U.Strongly nonlinear generalized equations[J].J Math Anal Appl,1998,220:65—76. doi:  10.1006/jmaa.1997.5796 | 
| [14] | Zeng L U.Iterative algorithm for finding approximate solutions to completely generalized strongly nonlinear quasi-variational inequality[J].J Math Anal Appl,1996,201:180—191. doi:  10.1006/jmaa.1996.0249 | 
