LI Wen-cheng, DENG Zi-chen, HUANG Yong-an. Efficient Numerical Integrators for Highly Oscillatory Dynamic Systems Based on Modified Magnus Integrator Method[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1211-1218.
Citation: LI Wen-cheng, DENG Zi-chen, HUANG Yong-an. Efficient Numerical Integrators for Highly Oscillatory Dynamic Systems Based on Modified Magnus Integrator Method[J]. Applied Mathematics and Mechanics, 2006, 27(10): 1211-1218.

Efficient Numerical Integrators for Highly Oscillatory Dynamic Systems Based on Modified Magnus Integrator Method

  • Received Date: 2005-08-16
  • Rev Recd Date: 2006-04-06
  • Publish Date: 2006-10-15
  • Based on the Magnus integrator method established in linear dynamic systems, an efficiently improved modified Magnus integrator method is proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the second-order dynamic system was reformulated as a system of the first-order and transfered the frame of reference by introducing new variables so that highly oscillatory behaviour is inherited from the entries in the meantime. Then the modified Magnus integrator method based on local linearization was appropriately-designed for solving the above new form and some improved ones are also presented. Finally, numerical examples are presented and analyzed to show that the proposed methods appear to be quite adequate for integration for highly oscillatory dynamic systems including Hamiltonian systems problem with long time and effectiveness.
  • loading
  • [1]
    Petzold L R, Jay L O,Yen J. Numerical solution of highly oscillatory ordinary differential equations[J].Acta Numerica,1997,6:437—483. doi: 10.1017/S0962492900002750
    [2]
    Hairer E, Lubich C,Wanner G.Geometric Numerical Integration[M].Ch XIII.Berlin:Springer Verlag,2002.
    [3]
    Gautschi W. Numerical integration of ordinary differential equations based on trigonometric polynomials[J].Numer Math,1961,3(1):381—397. doi: 10.1007/BF01386037
    [4]
    García-Archilla B, Sanz-Serna J M,Skeel R D. Long-time-step methods for oscillatory differential equations[J].SIAM J Sci Comput,1998,20(3):930—963. doi: 10.1137/S1064827596313851
    [5]
    Hochbruck M, Lubich C.A Gautschi-type method for oscillatory second-order differential equations[J].Numer Math,1999,83(3):403—426. doi: 10.1007/s002110050456
    [6]
    Iserles A, Nrsett S P. On the solution of linear differential equations in Lie groups[J].Philos Trans Roy Soc,Ser A,1999,357(1754):983—1020. doi: 10.1098/rsta.1999.0362
    [7]
    Iserles A, Munthe Kaas H Z, Nrsett S P,et al.Lie-groups methods[J].Acta Numerica,2000,9:215—365. doi: 10.1017/S0962492900002154
    [8]
    Iserles A. On the global error of discretization methods for highly-oscillatory ordinary differential equations[J].BIT,2002,42(3):561—599. doi: 10.1023/A:1022049814688
    [9]
    Iserles A, Think globally, act locally: Solving highly-oscillatory ordinary differential equations[J].Appl Numer Anal,2002,43(1):145—160.
    [10]
    Iserles A.On Cayley-transform methods for the discretization of Lie-group equations[J].Found Comput Maths,2001,1(2):129—160. doi: 10.1007/s102080010003
    [11]
    Hairer E,Nrsett S P,Wanner G.Solving Ordinary Differential Equations Ⅰ: Nonstiff Problems[M].Berlin:Springer-Verlag,1987.
    [12]
    Vigo-Aguiar J,Ferrándiz J M. A general procedure for the adaptation of multistep algorithms to the integration of oscillatory problems[J].SIAM J Numer Anal,1998,35(4):1684—1708. doi: 10.1137/S0036142995286763
    [13]
    Zhang S, Deng Z.A simple and efficient fourth-order approximation solution for nonlinear dynamical systems[J].Mech Res Comm,2004,31(2):221—228. doi: 10.1016/j.mechrescom.2003.10.004
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2603) PDF downloads(599) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return