LUO Zhen-dong, MAO Yun-kui, ZHU Jiang. Nonlinear Galerkin Mixed Element Methods for the Stationary Incompressible Magnetohydrodynamics[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1486-1496.
Citation: LUO Zhen-dong, MAO Yun-kui, ZHU Jiang. Nonlinear Galerkin Mixed Element Methods for the Stationary Incompressible Magnetohydrodynamics[J]. Applied Mathematics and Mechanics, 2006, 27(12): 1486-1496.

Nonlinear Galerkin Mixed Element Methods for the Stationary Incompressible Magnetohydrodynamics

  • Received Date: 2005-03-01
  • Rev Recd Date: 2006-07-27
  • Publish Date: 2006-12-15
  • A nonlinear Galerkin mixed element (NGME) method for the stationary incompressible magnetohydrodynamics equations was presented. And the existence and error estimates of the NGME solution were derived.
  • loading
  • [1]
    Jackson J D.Classical Electrodynamics[M].New York:Wiley,1975.
    [2]
    Foias C,Manley O P,Temam R.Modelization of the interaction of small and large eddies in two dimensional turbulent flows[J].Math Model Numer Anal,1988,22(1):93—114.
    [3]
    Marion M,Temam R.Nonlinear Galerkin method[J].SIAM J Numer Anal,1989,2(5):1139—1157.
    [4]
    Foias C,Jolly M,Kevrekidis I G,et al.Dissipativy of numerical schemes[J].Nonlinearity,1991,4(4):591—613. doi: 10.1088/0951-7715/4/3/001
    [5]
    Devulder C,Marion M,Titi E.On the rate of convergence of nonlinear Galerkin methods[J].Math Comp,1992,59(200):173—201.
    [6]
    Marion M,Temam R.Nonlinear Galerkin methods: the finite elements case[J].Numer Math,1990,57(3):205—226. doi: 10.1007/BF01386407
    [7]
    Ait Ou Ammi A,Marion M.Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations[J].Numer Math,1994,68(2):189—213. doi: 10.1007/s002110050056
    [8]
    Li K T,Zhou L.Finite element nonlinear Galerkin methods for penalty Navier-Stokes equations[J].Math Numerica Sinica,1995,17(4):360—380.
    [9]
    Luo Z D,Wang L H.Nonlinear Galerkin mixed element methods for the non stationary conduction-convection problems(Ⅰ)—The continuous-time case[J].Chinese J Numer Math Appl,1998,20(4):71—94.
    [10]
    Luo Z D,Wang L H.Nonlinear Galerkin mixed element methods for the non stationary conduction-convection problems(Ⅱ)—The backward one-step Euler fully discrete format[J].Chinese J Numer Math Appl,1999,21(1):86—105.
    [11]
    Adams R A.Sobolev space[M].New York:Academic Press,1975.
    [12]
    Gunzburger M D,Meir A J,Peterson J S.On the existence,uniqueness,and finite element approximation of solution of the equation of stationary,incompressible magnetohydrodynamics[J].Math Comp,1991,56(194):523—563. doi: 10.1090/S0025-5718-1991-1066834-0
    [13]
    Ciarlet P G.The Finite Element Method for Elliptic Problems[M]. Amsterdam:North-Holland,1978.
    [14]
    Bernardi C,Raugel B. Analysis of some finite elements for the Stokes problem[J].Math Comp,1985,44(169):71—79. doi: 10.1090/S0025-5718-1985-0771031-7
    [15]
    Wiedmer M.Finite element approximation for equation of magnetohydrodynamics[J].Math Comp,1999,69(229):83—101. doi: 10.1090/S0025-5718-99-01146-1
    [16]
    罗振东.混合有限元法基础及其应用[M].北京:科学出版社,2006.
    [17]
    Girault V,Raviart P A.Finite Element Approximations of the Navier-Stokes Equations, Theorem and Algorithms[M].New York:Springer-Verlag,1986.
    [18]
    罗振东,朱江.定常的Navier-Stokes方程的非线性Galerkin混合元法及其后验估计[J].应用数学和力学,2002,23(10):1061—1072.
    [19]
    Bank R E,Welfert B.A posteriori error estimates for the Stokes equations: A comparison[J].Comput Methods Appl Mech Engrg,1990,82(3):323—340. doi: 10.1016/0045-7825(90)90170-Q
    [20]
    Temam R.Navier-Stokes Equations[M].Amsterdam:North-Holland,1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2842) PDF downloads(762) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return