ZHANG Neng-hui, WANG Jian-jun, CHENG Chang-jun. Complex-Mode Galerkin Approach in Transverse Vibration of an Axially Accelerating Viscoelastic String[J]. Applied Mathematics and Mechanics, 2007, 28(1): 1-8.
Citation: ZHANG Neng-hui, WANG Jian-jun, CHENG Chang-jun. Complex-Mode Galerkin Approach in Transverse Vibration of an Axially Accelerating Viscoelastic String[J]. Applied Mathematics and Mechanics, 2007, 28(1): 1-8.

Complex-Mode Galerkin Approach in Transverse Vibration of an Axially Accelerating Viscoelastic String

  • Received Date: 2005-10-21
  • Rev Recd Date: 2006-10-11
  • Publish Date: 2007-01-15
  • Under the consideration of harmonic fluctuations of initial tension and axially velocity, a nonlinear governing equation for transverse vibration of an axially accelerating string is set up by using the equation of motion for a 3-dimensional deformable body with initial stresses. The Kelvin model was used to describe viscoelastic behaviors of the material. The basis function of the complex-mode Galerkin method for axially accelerating nonlinear strings was constructed by using the modal function of linear moving strings with constant axially transport velocity. By the constructed basis functions, the application of the complex-mode Galerkin method in nonlinear vibration analysis of an axially accelerating viscoelastic string was investigated. Numerical results show that the convergence velocity of the complex-mode Galerkin method is higher than that of the real mode Galerkin method for a variable coefficient gyroscopic system.
  • loading
  • [1]
    陈立群,Zu J W.轴向运动弦线的纵向振动及其控制[J]. 力学进展,2001,31(4):535-546.
    [2]
    Pakdemirli M, Ulsoy A G.Stability analysis of an axially accelerating string[J].J Sound Vib,1997,203(5):815-832. doi: 10.1006/jsvi.1996.0935
    [3]
    吴俊,陈立群.轴向变速运动弦线的非线性振动的稳态响应及其稳定性[J].应用数学和力学,2004,25(9):917-926.
    [4]
    周洪刚,朱凌,郭乙木. 轴向加速度运动弦线横向振动的数值计算方法[J].机械强度,2004,26(1):16-19.
    [5]
    CHEN Li-qun,ZHAO Wei-jia,Zu J W. Simulations of transverse vibrations of an axially moving string: A modified difference approach [J].Applied Mathematics and Computation,2005,166(3):596-607. doi: 10.1016/j.amc.2004.07.006
    [6]
    Chen T M. The hybrid Laplace transform/finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams[J].Int J Numerical Method Eng,1995,38(3):509-522. doi: 10.1002/nme.1620380310
    [7]
    Ni Y Q,Lou W J,Ko J M.A hybrid pseu-force/Laplace transform method for nonlinear transient response of a suspended cable[J].J Sound Vib,2000,238(2):189-124. doi: 10.1006/jsvi.2000.3082
    [8]
    CHEN Li-qun,ZHANG Neng-hui,Zu J W.The regular and chaotic vibrations of an axially moving viscoelastic string based on 4-order Galerkin truncation[J].J Sound Vib,2003,261(4):764-773. doi: 10.1016/S0022-460X(02)01281-6
    [9]
    CHEN Li-qun,ZHANG Neng-hui,Zu J W. Bifurcation and chaos in nonlinear vibrations of a moving viscoelastic string[J].Mechanics Research Communications,2002,29(2/3):81-90. doi: 10.1016/S0093-6413(02)00241-0
    [10]
    CHEN Li-qun,ZHANG Neng-hui.Nonlinear dynamics of axially moving viscoelastic strings based on translating eigenfunctions[A].In:Gutkowski W,Kowalewski T A Eds.The 21st International Congress of Theoretical and Applied Mechanics(IUTAM-ICTAM04)[C].Warszawa: IPPT PAN, 2004,390-391.
    [11]
    ZHANG Neng-hui,CHEN Li-qun.Nonlinear dynamical analysis of axially moving viscoelastic strings[J].Chaos, Solitons and Fractals,2005,24(4):1065-1074. doi: 10.1016/j.chaos.2004.09.113
    [12]
    CHEN Li-qun, Zu J W, WU Ju,et al.Transverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity[J].Journal of Engineering Mathematics,2004,48(2):171-182. doi: 10.1023/B:ENGI.0000011929.17902.87
    [13]
    CHEN Li-qun,WU Jun, Zu J W. Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string[J].Nonlinear Dynamics,2004,35(4):347-360. doi: 10.1023/B:NODY.0000027744.15436.ca
    [14]
    Bolotin V V.Non-Conservation Problems of the Theory of Elastic Stability[M].New York: Macmillan,1963.
    [15]
    Wickert J A,Mote C D Jr. Classical vibration analysis of axially moving continua[J].ASME J Appl Mech,1990,57(3):738-744. doi: 10.1115/1.2897085
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3153) PDF downloads(634) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return