DAI Tian-min. Renewal of Basic Laws and Principles for Polar Continuum Theories(Ⅺ)——Consistency Problems[J]. Applied Mathematics and Mechanics, 2007, 28(2): 147-155.
Citation: DAI Tian-min. Renewal of Basic Laws and Principles for Polar Continuum Theories(Ⅺ)——Consistency Problems[J]. Applied Mathematics and Mechanics, 2007, 28(2): 147-155.

Renewal of Basic Laws and Principles for Polar Continuum Theories(Ⅺ)——Consistency Problems

  • Received Date: 2006-01-14
  • Rev Recd Date: 2006-11-04
  • Publish Date: 2007-02-15
  • Some consistency problems existing in continuum field theories are briefly reviewed.Three arts of consistency problems are clarified based on the renewed basic laws for polar continua.The first art discussed the consistency problems between the basic laws for polar continua.The second art discussed the consistency problems between the basic laws for polar continua and for other nonpolar continua.The third art discussed the consistency problems between the basic laws for micropolar continuum theories and the dynamical equations for rigid body.The results presented here can helpus get a deeper understanding of the structure of the basic laws for various continuum theories and the interrelations between them.In the meantime,these results obtained also show clearly that the consistency problems could not be solved in the framework of traditional basic laws for continuum field theories.
  • loading
  • [1]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅰ)——微极连续统[J].应用数学和力学,2003,24(10):991-997.
    [2]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅱ)——微态连续统理论和偶应力理论[J].应用数学和力学,2003,24(10):998-1004.
    [3]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅲ)——Noether定理[J].应用数学和力学,2003,24(10):1005-1011.
    [4]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅳ)——表面守恒定律[J].应用数学和力学,2003,24(11):1101-1107.
    [5]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅴ)——极性热力连续统[J]. 应用数学和力学,2003,24(11):1108-1113.
    [6]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅵ)——质量和惯性守恒定律[J].应用数学和力学,2003,24(12):1211-1216.
    [7]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅶ)——增率型[J].应用数学和力学,2003,24(12):1217-1221.
    [8]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅷ)——全功能原理[J]. 应用数学和力学,2005,26(3):287-292.
    [9]
    戴天民. 重建极性连续统理论的基本定律和原理(Ⅸ)——热力学[J].应用数学和力学,2005,26(6):653-658.
    [10]
    戴天民.重建极性连续统理论的基本定律和原理(Ⅹ)——主均衡定律[J].应用数学和力学,2006,27(2):151—158.
    [11]
    Eringen A C.Microcontinuum Field TheoriesⅠ—Foundations and Solids[M].New York,Berlin,London: Springer, 1999.
    [12]
    Eringen A C.Microcontinuum Field TheoriesⅡ—Fluent Media[M].New York,Berlin,London: Springer, 2001.
    [13]
    Eringen A C.Nonlocal Continuum Field Theories[M].New York,Berlin,London:Springer,2002.
    [14]
    Eringen A C.Continuum Physics[M].Vol Ⅳ.New York: Academic Press, 1976.
    [15]
    Nowacki W.Theory of Asymmetric Elasticity[M].Oxford: Pergamon Press, 1986.
    [16]
    戴天民.微极连续统的耦合场理论的再研究(Ⅱ)——微极热压电弹性理论和电磁热弹性理论[J].应用数学和力学,2002,23(3):229-238.
    [17]
    Eringen A C. Balance laws of micromorphic continua revisited[J].Internat J Engng Sci,1992,30(6):805-810. doi: 10.1016/0020-7225(92)90109-T
    [18]
    戴天民.带有微结构的连续统中新的能量守恒定律和C-D不等式[J].应用数学和力学,2001,22(2):119-126.
    [19]
    戴天民.广义连续统场论中新的功能和功率原理[J].应用数学和力学,2001,22(11):1111-1118.
    [20]
    Ciarletta M,Iesan D.Non-Classical Elastic Solids[M].Boston, London, Melbourne: Longman Scientific & Technical, 1993.
    [21]
    戴天民.对带有微结构的弹性固体理论的再研究[J].应用数学和力学,2002,23(8):771-777.
    [22]
    Green A E, Naghdi P M. A demonstration of consistency of an entropy balance with balance of energy[J].Appl Math Phys,1991,42(3):159-168. doi: 10.1007/BF00945790
    [23]
    DAI Tian-min.New laws and principles for continuum mechanics PartⅠ—balance laws and equations[A].In: CHIEN Wei-zang Ed.Proc 4th International Conference on Nonlinear Mechanics[C].Shanghai: Shanghai University Press,2002,206-209.
    [24]
    DAI Tian-min.New laws and principles for continuum mechanics PartⅡ—energy rate and power[A].In: CHIEN Wei-zang Ed.Proc 4th International Conference on Nonlinear Mechanics[C].Shanghai: Shanghai University Press, 2002,210-212.
    [25]
    DAI Tian-min.On laws and principles for continuum field theories[A].In: CHIEN Wei-zang Ed.Proc 4th International Conference on Nonlinear Mechanics[C].Shanghai: Shanghai University Press, 2002, 29-41.
    [26]
    戴天民. 论经典连续统力学基本定律和均衡方程体系[J].见:戴世强,周哲玮,程昌钧,等 编.现代数学和力学(MMM-Ⅸ)[C].上海:上海大学出版社, 2004, 23-33.
    [27]
    黄筑平. 连续介质力学基础[M]. 北京:高等教育出版社, 2004.
    [28]
    Wang C C.Mathematical Principles of Mechanics and Electromagnetism:Part A—Analytical and Continuum Mechanics[M].New York, London: Plenum Press, 1979.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2323) PDF downloads(822) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return