XU Hai-li, GUO Xing-ming. Auxiliary Principle and Three-Step Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(6): 643-650.
Citation: XU Hai-li, GUO Xing-ming. Auxiliary Principle and Three-Step Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities[J]. Applied Mathematics and Mechanics, 2007, 28(6): 643-650.

Auxiliary Principle and Three-Step Iterative Algorithms for Generalized Set-Valued Strongly Nonlinear Mixed Variational-Like Inequalities

  • Received Date: 2007-03-12
  • Rev Recd Date: 2007-04-18
  • Publish Date: 2007-06-15
  • The auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended.The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities was proved.A novel and innovative three-step iterative algorithm to compute approximate solution was constructed.And the existence of the solution of the generalized set-valued strongly nonlinear mixed variationa-llike inequality was showed by using the auxiliary principle technique.The convergence of three-step iterative sequences generated by the algorithm was also proved.
  • loading
  • [1]
    Cubiotti P. Existence of solutions for lower semi-continuous quasi equilibrium problems[J].Comput Math Appl,1995,30(12):11-12.
    [2]
    Noor M A. Auxiliary principle for generalized mixed variational-like inequalities[J].J Math Anal Appl,1997,215(1):78-85.
    [3]
    Noor M A. Some recent advances in variational inequalities—Ⅰ[J].New Zealand J Math,1997,26(2):53-80.
    [4]
    Noor M A. Generalized variational-like inequalities[J].Math Comput Modelling,1998,27(3):93-101.
    [5]
    Panagiotopoulos P D,Stavroulakis G E. New types of variational principles based on the notion of quasi-differentiability[J].Acta Mech,1992,94(3/4):171-194.[JP2]. Panagiotopoulos P D.Inequality Problems in Mechanics and Applications[M].Boston: Birkhuser,1985. doi: 10.1007/BF01176649
    [7]
    Parida J,Sen A. A variational-like inequality for multi-functions with applications[J].J Math Anal Appl,1987,124(1):73-81. doi: 10.1016/0022-247X(87)90025-4
    [8]
    Tian G. Generalized quasi variational-like inequality problem[J].Math Oper Res,1993,18(3):752-764. doi: 10.1287/moor.18.3.752
    [9]
    Yao J C. The generalized quasi variational inequality problem with applications[J].J Math Anal Appl,1991,158(1):139-160. doi: 10.1016/0022-247X(91)90273-3
    [10]
    Yao J C. Existence of generalized variational inequalities[J].Oper Res Lett,1994,15(1):35-40. doi: 10.1016/0167-6377(94)90011-6
    [11]
    Huang N J. On the generalized implicit quasivariational inequalities[J].J Math Anal Appl,1997,216(1):197-210. doi: 10.1006/jmaa.1997.5671
    [12]
    Huang N J. Mann and Ishikwa type perturbed iterative algorithms for generalized nonlinear implicit quasi-variational inclusions[J].Comput Math Appl,1998,35(1):1-7.
    [13]
    Glowinski R, Lions J L,Tremolieres R.Numerical Analysis of Variational Inequalities[M].Amsterdam :North-Holland, 1981.
    [14]
    Chang S S,Xiang S W. On the existence of solutions for a class of quasi-bilinear variational inequalities[J].J Systems Sci Math Sci,1996,16(3):136-140.
    [15]
    DING Xie-ping.On the generalized mixed variational-like inequalities[J].J Sichuan Normal Univ,2003,22(5):494-503.
    [16]
    DING Xie-ping.Predictor-corrector iterative algorithms for solving generalized mixed quasi-variational-like inequalities[J].J Comput Appl Math, 2005,182(1):1-12. doi: 10.1016/j.cam.2004.11.036
    [17]
    Siddiqi A H, Ansari Q H.Strongly nonlinear quasi-variational inequalities[J].J Math Anal Appl, 1990,149(2):444-450. doi: 10.1016/0022-247X(90)90054-J
    [18]
    Noor M A. Splitting methods for pseudomonotone general mixed variational inequalities[J].J Global Optim,2000,18(1):75-89. doi: 10.1023/A:1008322118873
    [19]
    Tseng P. A modified forward-backward splitting method for maximal monotone mappings[J].SIAM J Control Optim,2000,38(2):431-466. doi: 10.1137/S0363012998338806
    [20]
    Xu H K. Iterative algorithms for nonlinear operators[J].J London Math Soc,2002,66(2):240-256. doi: 10.1112/S0024610702003332
    [21]
    HUANG Nan-jing,DENG Chuan-xian. Auxiliary principle and iterative algorithms for generalized set-valued strongly nonlinear mixed variational-like inequalities[J].J Math Anal Appl,2001,256(2):345-359. doi: 10.1006/jmaa.2000.6988
    [22]
    Glowinski R, Tallec P Le.Augmented Lagrange and Operator Splitting Methods in Nonlinear Mechanics[M].Philadelphia:SIAM,1989.
    [23]
    Huang N J, Liu Y P, Tang Y Y,et al.On the generalized set-valued strongly nonlinear implicit variational inequalities[J].Comput Math Appl,1998,37(10):1-7.
    [24]
    Yao J C. Abstract variational inequality problems and a basic theorem of complementarity[J].Comput Math Appl,1993,25(1):73-79.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3041) PDF downloads(877) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return