QU Fu-li, WANG Wen-qia. Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 869-876.
Citation: QU Fu-li, WANG Wen-qia. Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 869-876.

Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation

  • Received Date: 2006-02-14
  • Rev Recd Date: 2007-04-16
  • Publish Date: 2007-07-15
  • A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation was given here. Using the schemes and the full explicit difference scheme and the full implicit difference scheme, the alternating difference scheme for solving the KdV equation was constructed. The scheme is linear unconditionally stable by analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
  • loading
  • [1]
    杨伯君,赵玉芳.高等数学物理方法[M].北京: 北京邮电大学出版社,2003.
    [2]
    Zabusky N J,Kruskal M D.Interaction of “solitions” in a collisionless plasma and the recurrence of initial states[J].Physical Rev Lett,1965,15(6):240-243. doi: 10.1103/PhysRevLett.15.240
    [3]
    Osborne A R.Nonlinear fourier analysis for the infinite-interval Korteweg-de Vries equation Ⅰ:An algorithm for direct scattering transform[J].J Comput Phys,1991,94(2):284-313. doi: 10.1016/0021-9991(91)90223-8
    [4]
    彭点云. KdV方程的多点格式方法[J].数值计算与计算机应用,1998,19(4): 241-251.
    [5]
    Djidjeli K, Price W G,Twizell E H,et al.Numerical methods for the solution of the third-and fifth-order dispersive Korteweg-de Vries equations[J].J Comput Appl Math,1995,58(3):307-336. doi: 10.1016/0377-0427(94)00005-L
    [6]
    FENG Bao-feng,Taketomo Mitsui.A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations[J].J Comput Appl Math,1998,90(1):95-116. doi: 10.1016/S0377-0427(98)00006-5
    [7]
    Evans D J,Abdullah A R B. Group explicit methods for parabolic equations[J].Intern J Comput Math,1983,14(1):73-105. doi: 10.1080/00207168308803377
    [8]
    ZHANG Bao-lin,LI Wen-zhi.On alternating segment Crank-Nicolson scheme[J].Parallel Computing,1994,20(6):897-902. doi: 10.1016/0167-8191(94)90123-6
    [9]
    YUAN Guang-wei,SHEN Long-jun,ZHOU Yu-lin.Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional parabolic systems[J]. Inc Numer Methods Partial Diffential Eq,1999,15(6):25-636.
    [10]
    ZHU Shao-hong,Zhao J.The alternating segment explicit-implicit method for the dispersive equation[J].Applied Mathematics Letters,2001,14(6):657-662. doi: 10.1016/S0893-9659(01)80022-7
    [11]
    朱少红,袁光伟.色散方程的一类本性并行的差分格式[J].应用数学学报,2003,26(3):495-503.
    [12]
    Kellogg R B.An alternating direction method for operator equations[J].J Soc Indust Appl Math,1964,12(4):848-854. doi: 10.1137/0112072
    [13]
    LI Ping-wah.On the numerical study of the KdV equation by the semi-implicit and leaap-frog method[J]. Computer Physics Communications,1995,88(2/3):121-127. doi: 10.1016/0010-4655(95)00060-S
    [14]
    Djidjeli K,Price W G,Temarel P,et al.Alinerized implicit pseudo-spectral method for certain non-linear water wave qeuations[J].Commun Numer Meth Engng,1998,14(10):977-993. doi: 10.1002/(SICI)1099-0887(1998100)14:10<977::AID-CNM205>3.0.CO;2-T
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2901) PDF downloads(917) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return