Rajneesh Kumar, Aseem Miglani, N. R. Garg. Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources[J]. Applied Mathematics and Mechanics, 2007, 28(8): 939-948.
Citation: Rajneesh Kumar, Aseem Miglani, N. R. Garg. Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources[J]. Applied Mathematics and Mechanics, 2007, 28(8): 939-948.

Elastodynamic Analysis of an Anisotropic Liquid-Saturated Porous Medium Due to Mechanical Sources

  • Received Date: 2005-10-11
  • Rev Recd Date: 2007-05-08
  • Publish Date: 2007-08-15
  • Elastodynamic analysis of an anisotropic liquid-saturated porous medium has been made to study a deformation problem of a transversely isotropic liquid-saturated porous medium due to mechanical sources.Certain physical problems are of the nature,in which the deformation takes place only in one direction,e.g.,the problem relating to deformed structures and columns.In soil mechanics,assumption of only vertical subsidence is often invoked and this leads to the one dimensional model of poroelasticity.By considering a model of one-dimensional deformation of anisotropic liquid-saturated porous medium,the variations in disturbances were observed with reference to time and distance.The distribution of displacements and stresses are affected due to anisotropy of the medium, and also due to the type of sources causing the disturbances.
  • loading
  • [1]
    Armero F, Callari C.An analysis of strong discontinuities in a saturated poroelastic solid[J].Internat J Numer Methods Engrg,1999,46(10):1673-1698. doi: 10.1002/(SICI)1097-0207(19991210)46:10<1673::AID-NME719>3.0.CO;2-S
    [2]
    Fellah Z E A, Depollier C.Transient acoustic wave propagation in rigid porous media: A time domain approach[J].J Acoust Soc Amer,2000,107(2):683-688. doi: 10.1121/1.428250
    [3]
    Tajjudin M, Reddy G N.Existance of stoneley waves at an unbounded interface between a poroelastic solid lying over an elastic solid[J].Bull Calcutta Math Soc,2002,94(2):107-112.
    [4]
    Schanz M, Pryl D.Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua[J].Internat J Solids Structures,2004,41(15):4047-4073. doi: 10.1016/j.ijsolstr.2004.02.059
    [5]
    Tajjudin M, Reddy G N.Effect of boundaries on the dynamic interaction of a liquid-filled porous layer and a supporting continuum[J].Sadhana,2005,30(4):527-535. doi: 10.1007/BF02703277
    [6]
    Santos J E, Ravazzoli C L,Geiser J.On the static and dynamic behavior of fluid saturated composite porous solids: a homogenization approach[J].Internat J Solids Structures,2006,43(5):1224-1238. doi: 10.1016/j.ijsolstr.2005.04.018
    [7]
    Tajjudin M, Shah S A. Circumferential waves of infinite hollow poroelastic cylinders[J].J Appl Mech,2006,73(4):705-708. doi: 10.1115/1.2164513
    [8]
    Chen S L, Chen L Z,Pan E.Three-dimensional time-harmonic Green's functions of saturated soil under buried loading[J].Soil Dynamics and Earthquake Engineering,2007,27(5):448-462. doi: 10.1016/j.soildyn.2006.09.006
    [9]
    Sharma M D, Gogna M L.Wave propagation in anisotropic liquid-saturated porous solids[J].J Acoust Soc Amer,1991,90(2):1068-1073. doi: 10.1121/1.402295
    [10]
    Sun F, Banks-Lee P,Peng H. Wave propagation theory in anisotropic periodically layered fluid-saturated porous media[J].J Acoust Soc Amer,1993,93(3):1277-1285. doi: 10.1121/1.405412
    [11]
    Dey S, Sarkar M G.Torsional surface waves in an initially stressed anisotropic porous medium[J].J Engg Mech,2002,128(2):184-189. doi: 10.1061/(ASCE)0733-9399(2002)128:2(184)
    [12]
    Altay G, Dokmeci M C.On the equations governing the motion of an anisotropic poroelastic material[J].Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2006,462(2072):2373-2396. doi: 10.1098/rspa.2006.1665
    [13]
    He F S, Huang Y.Basic equations of transversely isotropic fluid-saturated poroelastic media[J].Chinese J Geophysics,1984,11(66):131-137.
    [14]
    Vgenopoulou I,Beskos D E. Dynamic poroelastic column and borehole problem analysis[J].Soil Dynamics and Earthquake Engineering,1984,11(66):335-345.
    [15]
    Cui L, Cheng A H D,Kaliakin V N,et al.Finite element analysis of anisotropic poroelasticity: A generalized Mandel's problem and an inclined bore hole problem[J].Internat J Numer Anal Methods Geomech,1996,20:381-401. doi: 10.1002/(SICI)1096-9853(199606)20:6<381::AID-NAG826>3.0.CO;2-Y
    [16]
    Schanz M, Cheng A H D.Transient wave propagation in a one-dimensional poroelastic column[J].Acta Mechanica,2000,145(1/4):1-18. doi: 10.1007/BF01453641
    [17]
    Schanz M, Cheng A H D. Dynamic analysis of a one-dimensional poroviscoelastic column[J].J Appl Mech Trans ASME,2001,68(2):192-198. doi: 10.1115/1.1349416
    [18]
    Stover S C, Ge S, Screaton E J. A one-dimensional analytically based approach for studying poroplastic and viscous consolidation: Application to Woodlark basin, Papua New Guinea[J].J Geophysics Research,2003,108(B9):EPM11 1-14.
    [19]
    Zhang J, Roegiers J C,Bai M. Dual porosity elastoplastic analysis of non-isothermal one-dimensional consolidation[J].Geotechnical and Geological Engineering,2004,22(4):589-610. doi: 10.1023/B:GEGE.0000047039.96793.25
    [20]
    Biot M A. The theory of propagation of elastic waves in a fluid saturated porous solid[J].J Acoust Soc Amer,1956,28(2):168-191. doi: 10.1121/1.1908239
    [21]
    Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid[J].J Appl Phys,1956,27(5):459-467. doi: 10.1063/1.1722402
    [22]
    Honig G, Hirdes U.A method for the numerical inversion of the Laplace transform[J].J Comput Appl Math,1984,10:113-132. doi: 10.1016/0377-0427(84)90075-X
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3119) PDF downloads(683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return