DAI Wan-yang. Diffusion Approximations for Multiclass Queueing Networks Under Preemptive Priority Service Discipline[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1185-1196.
Citation: DAI Wan-yang. Diffusion Approximations for Multiclass Queueing Networks Under Preemptive Priority Service Discipline[J]. Applied Mathematics and Mechanics, 2007, 28(10): 1185-1196.

Diffusion Approximations for Multiclass Queueing Networks Under Preemptive Priority Service Discipline

  • Received Date: 2005-10-03
  • Rev Recd Date: 2007-07-11
  • Publish Date: 2007-10-15
  • A heavy traffic limit theorem is proved to justify diffusion approximations for multiclass queueing networks under preemptive priority service discipline and provide effective stochastic dynamical models for the systems.Such queueing networks typically appear in high-speed integrated services packet networks in telecommunication system.In the network,there are a number of packet traffic types.Each type needs a number of job classes (stages) of processing and each type of jobs is assigned the same priority rank at every station where it possibly receives service.Moreover,there is no inter-routing among different traffic types throughout the entire network.
  • loading
  • [1]
    Dai W.A heavy traffic limit theorem for queueing networks with finite capacity[A].Presentation With Preprint at INFORMS Applied Probability Conference[C].Atlanta, USA,1995.
    [2]
    Dai W. Brownian approximations for queueing networks with finite buffers: modeling,heavy traffic analysis and numerical implementations[D].Ph D Thesis.School of Mathematics, Georgia Institute of Technology, 1996. Aslo published in UMI Dissertation Services, A Bell & Howell Company, 300 N.Zeeb Road, Ann Arbor,Michican 48106, USA,1997.
    [3]
    Dai J G,Dai W.A heavy traffic limit theorem for a class of open queueing networks with finite buffers[J].Queueing Systems,1999,32(1/3),5-40.
    [4]
    Reiman M I.Open queueing networks in heavy traffic [J].Mathematics of Operations Research,1984,9(3):441-458. doi: 10.1287/moor.9.3.441
    [5]
    Bramson M. State space collapse with application to heavy traffic limits for multiclass queueing networks[J].Queueing Systems,1998,30(1/2):89-148. doi: 10.1023/A:1019160803783
    [6]
    Bramson M.State space collapse for queueing networks[A].Proceedings of the International Congress of Mathematicians[C].Bielefeld,Germany:Documenta mathematica,Vol Ⅲ.1998,,213-222.
    [7]
    Williams R J.Diffusion approximations for open multiclass queueing networks: sufficient conditions involving state space collapse[J].Queueing Systems: Theory and Applications,1998,30(1/2):27-88. doi: 10.1023/A:1019108819713
    [8]
    Williams R J.Reflecting diffusions and queueing networks[A].Proceedings of the International Congress of Mathematicians[M].Bielefeld,Germany:Documenta mathematica,Vol Ⅲ.1998,321-330.
    [9]
    Bramson M,Dai J.G. Heavy traffic limits for some queueing networks[J].Annals of Applied Probability,2001,11(1):49-90. doi: 10.1214/aoap/998926987
    [10]
    Chen H,Zhang H. A sufficient condition and a necessary condition for the diffusion approximations of multiclass queueing networks under priority service displines[J].Queueing Systems,2000,34(1/4):237-268. doi: 10.1023/A:1019113204634
    [11]
    Chen H,Zhang H.Diffusion approximations for some multiclass queueing networks with FIFO service disciplines[J].Mathematics of Operations Research,2000,25(4):679-707. doi: 10.1287/moor.25.4.679.12115
    [12]
    Harrison J M,Williams R J.Multidimensional reflected Brownian motions having exponential stationary distributions[J].Annals of Probability,1987,15(1):115-137. doi: 10.1214/aop/1176992259
    [13]
    Dai J G,Harrison J M.Reflected Brownian motion in an orthant: numerical methods for steady-state analysis[J].Annals of Applied Probability,1992,2(1):65-86. doi: 10.1214/aoap/1177005771
    [14]
    Shen X,Chen H,Dai J G,et al.The finite element method for computing the stationary distribution of an SRBM in a hypercube with applications to finite buffer queueing networks[J].Queueing Systems,2002,42(1):33-62. doi: 10.1023/A:1019942711261
    [15]
    Dai J G,Wang Y.Nonexistence of Brownian models of certain multicalss queueing networks[J].Queueing Systems,1993,13(1/3):41-46. doi: 10.1007/BF01158928
    [16]
    Williams R J.An invariance principle for semimartingale reflecting Brownian motions in an orthant[J].Queueing Systems,1998,30(1/2):5-25. doi: 10.1023/A:1019156702875
    [17]
    Ethier S N,Kurtz T G.Markov Processes: Charaterization and Convergence[M]. New York:Wiley,1986.
    [18]
    Bernard A,Kharroubi A El.Regulation deterministes et stochastiques dans le premier “orthant” de Rn[J].Stochastics Stochastics Rep,1991,34(3/4):149-167.
    [19]
    Harrison J M,Reiman M I.Reflected Brownian motion on an orthant[J].Annals of Probability,1981,9(2):302-308. doi: 10.1214/aop/1176994471
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2491) PDF downloads(860) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return