Bikash Sahoo, H. G. Sharma. MHD Flow and Heat Transfer From a Continuous Surface in a Uniform Free Stream of a Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1307-1317.
Citation: Bikash Sahoo, H. G. Sharma. MHD Flow and Heat Transfer From a Continuous Surface in a Uniform Free Stream of a Non-Newtonian Fluid[J]. Applied Mathematics and Mechanics, 2007, 28(11): 1307-1317.

MHD Flow and Heat Transfer From a Continuous Surface in a Uniform Free Stream of a Non-Newtonian Fluid

  • Received Date: 2006-05-08
  • Rev Recd Date: 2007-06-07
  • Publish Date: 2007-11-15
  • An analysis was carried out to study the steady flow and heat transfer characteristics from a continuous flat surface moving in a parallel free stream of an electrically conducting non-Newtonian viscoelastic fluid. The flow is subjected to a transverse uniform magnetic field. The constitutive equation of the fluid is modeled by that for a second grade fluid. Numerical results were obtained for the distribution of velocity and temperature profiles. The efects of various physical parameters like viscoelastic parameter, magnetic parameter and Prandtl number on various momentum and heat transfer characteristics are discussed in detail and shown graphically.
  • loading
  • [1]
    Papanastasiou T C, Georgiou G C, Alexandrou A N.Viscous Fluid Flow[M].Boca Raton:CRC Press, 2000.
    [2]
    Sakiadis B C. Boundary-layer behavior on continuous solid surfaces—I boundary layer equations for two dimensional and axisymmetric flow[J].American Institute of Chemical Engineers Journal,1961,7:26-28. doi: 10.1002/aic.690070108
    [3]
    Sakiadis B C. Boundary layer behavior on continuous solid surface: the boundary layer on a continuous flat surface[J].American Institute of Chemical Engineers Journal,1961,7:221-224. doi: 10.1002/aic.690070211
    [4]
    Crane L J. Flow past a stretching sheet[J].Journal of Applied Mathematics and Physics, ZAMP,1970,21:645-647. doi: 10.1007/BF01587695
    [5]
    Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J].Canadian Journal Chemical Engineering,1977,55:744-746. doi: 10.1002/cjce.5450550619
    [6]
    Rivlin R S, Ericksen J L.Stress deformation relations for isotropic materials[J].Journal of Rational Mechanics and Analysis,1955,4:323-425.
    [7]
    Dunn J E, Fosdick R L. Thermodynamics, stability and boundedness of Fluids of complexity 2 and fluids of second grade[J].Archive for Rational Mechanics and Analysis,1974,56:191-252. doi: 10.1007/BF00280970
    [8]
    Dunn J E, Rajagopal K R. Fluids of differential type, critical review and thermodynamic analysis[J].International Journal of Engineering Science,1995,33:689-729. doi: 10.1016/0020-7225(94)00078-X
    [9]
    Fosdick R L, Rajagopal K R. Anomalous feature in the model of “second order fluids”[J].Archive for Rational Mechanics and Analysis,1979,70:145-152.
    [10]
    Galdi G P, Padula M, Rajagopal K R. On the conditional stability of the rest state of a fluid of second grade in unbounded domains[J].Archive for Rational Mechanics and Analysis,1990,109:173-182. doi: 10.1007/BF00405241
    [11]
    Fox V G, Ericksen L E, Fan L T. The laminar boundary layer on a moving continuous flat sheet immersed in a non-Newtonian fluid[J].American Institute of Chemical Engineers Journal,1969,15:327-333. doi: 10.1002/aic.690150307
    [12]
    Rajagopal K R, Na T Y, Gupta A S. Flow of a viscoelastic fluid over a stretching sheet[J].Rheological Acta,1984,24:213-215.
    [13]
    Troy W C, Overman E A, Ermentrout H G B,et al. Uniqueness of flow of a second-order fluid past a stretching sheet[J].Quarterly Journal of Applied Mathematics,1987,44:753-755.
    [14]
    Sadeghy K, Sharifi M. Local similarity solution for the flow of a “second-grade” viscoelastic fluid above a moving plate[J].International Journal Non-Linear Mechanics,2004,39:1265-1273. doi: 10.1016/j.ijnonlinmec.2003.08.005
    [15]
    Sadeghy K, Najafi A H, Saffaripour M. Sakiadis flow of an upper convected Maxwell fluid[J].International Journal Non-Linear Mechanics,2005,40:1220-1228. doi: 10.1016/j.ijnonlinmec.2005.05.006
    [16]
    Hassanien I A. Flow and heat transfer from a continuous surface in a parallel free stream of viscoelastic second-order fluid[J].Applied Scientific Research,1992,49:335-344. doi: 10.1007/BF00419979
    [17]
    Hady F M, Gorla R S R. Heat transfer from a continuous surface in a parallel free stream of viscoelastic fluid[J].Acta Mechanica,1998,128:201-208. doi: 10.1007/BF01251890
    [18]
    Bhatnagar R K, Gupta G, Rajagopal K R. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity[J].International Journal Non-Linear Mechanics,1995,30:391-405. doi: 10.1016/0020-7462(94)00027-8
    [19]
    Allan F M. Similarity solutions of a boundary layer problem over moving surfaces[J].Applied Mathematics Letter,1997,10:81-85. doi: 10.1016/S0893-9659(97)00015-3
    [20]
    Kumari M, Nath G. MHD boundary-layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free stream[J].Acta Mechanica,2001,146:139-150. doi: 10.1007/BF01246729
    [21]
    Abo-Eldahab E M, Salem A M. MHD free-convection flow of a non-Newtonian power-law fluid at a stretching surface with a uniform free-stream[J].Applied Mathematics and Computation,2005,169:806-818. doi: 10.1016/j.amc.2004.09.089
    [22]
    Rajeshwari G K, Rathna S L. Flow of a particular class of non-Newtonian visco-elastic fluid near a stagnation point[J].Journal of Applied Mathematics and Physics, ZAMP,1962,13:43-57. doi: 10.1007/BF01600756
    [23]
    Beard D W, Walters K. Elastico-viscous boundary layer flows—Ⅰ two-dimensional flow near a stagnation point[J].Proceedings Cambridge Philosophical Society, 1964,60:667-674. doi: 10.1017/S0305004100038147
    [24]
    Mishra S P, Mohapatra U. Elasticoviscous flow between a rotating and a stationary disk with uniform suction at the stationary disk[J].Journal of Applied Physics,1977,48:1515-1521. doi: 10.1063/1.323871
    [25]
    Shrestha G M. Laminar elastico-viscous flow through channels with porous walls with different permeability[J].Applied Science Research,1969,20:289-305. doi: 10.1007/BF00382401
    [26]
    Garg V K, Rajagopal K R. Stagnation point flow of a non-Newtonian fluid[J].Mechanics Research Communication,1990,17:415-421. doi: 10.1016/0093-6413(90)90059-L
    [27]
    Garg V K, Rajagopal K R. Flow of a non-Newtonian fluid past a wedge[J].Acta Mechanica,1991,88:113-123. doi: 10.1007/BF01170596
    [28]
    Davies M H. A note on elastico-viscous boundary layer flows[J].Journal of Applied Mathematics and Physics, ZAMP,1960,17:189-191.
    [29]
    Chiang K T. Dealing with complicated starting value in shooting process with Broyden's mehtod: Examples of the onset of convection for the viscoelastic fluid[J].International Communication in Heat and Mass Transfer,2004,31:815-826. doi: 10.1016/S0735-1933(04)00068-5
    [30]
    Teipel I. Die R?aumliche staupunktstr?omung f?ur ein viscoelastisches fluid[J].Rheological Acta,1986,25:75-79. doi: 10.1007/BF01332126
    [31]
    Ariel P.D. A Hybrid method for computing the flow of viscoelastic fluids[J].International Journal for Numerical Methods in Fluids,1992,14:757-774. doi: 10.1002/fld.1650140702
    [32]
    Labropulu F, Xu X, Chinichian M. Unsteady stagnation point flow of a non-Newtonian second grade fluid[J].International Journal of Mathematics and Mathematical Sciences,2003,60:3797-3807.
    [33]
    Labropulu F, Husain I, Chinichian M. Stagnation point flow of the Walters' B fluid with slip[J].International Journal of Mathematics and Mathematical Sciences,2004,61:3249-3258.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2970) PDF downloads(872) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return