SONG Jian, LIU Quan-sheng, YANG Lian-gui. Rossby Waves Excited by Large Topography and Beta Change in Barotropic Atmosphere[J]. Applied Mathematics and Mechanics, 2017, 38(2): 216-223. doi: 10.21656/1000-0887.370135
Citation: SONG Jian, LIU Quan-sheng, YANG Lian-gui. Rossby Waves Excited by Large Topography and Beta Change in Barotropic Atmosphere[J]. Applied Mathematics and Mechanics, 2017, 38(2): 216-223. doi: 10.21656/1000-0887.370135

Rossby Waves Excited by Large Topography and Beta Change in Barotropic Atmosphere

doi: 10.21656/1000-0887.370135
Funds:  The National Natural Science Foundation of China(11362012; 11562014; 41465002)
  • Received Date: 2016-05-03
  • Rev Recd Date: 2016-07-02
  • Publish Date: 2017-02-15
  • Based on the potential vorticity equation, the large topography and the change of Rossby wave parameter β with the latitude were considered and parameter δ was introduced. With the normal mode method, the Rossby wave phase velocity formula was obtained in the high latitude regions with the large topography, the Froude number and parameter δ. The research points out that the large topography and the Froude number under the change of β influence the stability of Rossby waves, and these factors usually play a stabilizing part in the Rossby waves.
  • loading
  • [1]
    刘萍, 李子良, 楼森岳. 一类耦合非线性Schrdinger方程的Painlevé性质、严格解及其大气重力波重的应用[J]. 应用数学和力学, 2010,31(11): 1308-1329.(LIU Ping, LI Zi-liang, LOU Sen-yue. A class of coupled nonlinear Schrdinger equation: Painlevé property, exact solutions and application to atmospheric gravity waves[J]. Applied Mathematics and Mechanics,2010,31(11): 1308-1329.(in Chinese))
    [2]
    刘式适, 刘式达. 大气动力学[M]. 北京: 北京大学出版社, 2008: 462-475.(LIU Shi-kuo, LIU Shi-da. Atmospheric Dynamics [M]. Beijing: Peking University Press, 2008: 462-475.(in Chinese))
    [3]
    罗德海. 大气中大尺度包洛孤立子理论与阻塞环流[M]. 北京: 气象出版社, 1999.(LUO De-hai. Envelope Rossby Solitons in the Large-Scale Atmosphere and Blocking Circulations [M]. Beijing: China Meteorological Press, 1999.(in Chinese)
    [4]
    Charney J G, Straus D M. From-drag instability multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems[J]. Journal of the Atmospheric Sciences,1980,37(6): 1157-1176.
    [5]
    Hart J E. Barotropic quasi-geostrophic flow over anisotropic mountains[J]. Journal of the Atmospheric Sciences,1979,36(9): 1736-1746.
    [6]
    Grose W L, Hoskins B J. On the influence of orography on large-scale atmospheric flow[J]. Journal of the Atmospheric Sciences,1979, 36(2): 223-234.
    [7]
    Davey M K. A quasi-linear theory for rotating flow over topography—part 1: steady β-plane channel[J]. Journal of Fluid Mechanics,1980,99(2): 267-292.
    [8]
    Davey M K. A quasi-linear theory for rotating flow over topography—part 2: beta-plane annulus[J]. Journal of Fluid Mechanics,1981,103: 297-320.
    [9]
    Gottwald G, Grimshaw R. The effect of topography on the dynamics of interacting solitary waves in the context of atmospheric blocking[J]. Journal of the Atmospheric Sciences,1999,56(21): 3663-3678.
    [10]
    李子良, 傅刚, 郭敬天, 等. 岛屿地形对极地低压和热带气旋发展的线性理论模型和观测资料分析[J]. 应用数学和力学, 2009,30(10): 1189-1201.(LI Zi-liang, FU Gang, GUO Jing-tian, et al. Topographic effects on polar low and tropical cyclone development in a simple theoretical model[J]. Applied Mathematics and Mechanics,2009,30(10): 1189-1201.(in Chinese))
    [11]
    Wingate B A, Embid P, Holmes-Cerfon M, et al. Low Rossby limiting dynamics for stably stratified flow with finite Froude number[J]. Journal of Fluid Mechanics,2011,676(69): 546-571.
    [12]
    熊建刚, 易帆, 李钧. 地形对正压大气Rossby波非线性相互作用的影响[J]. 应用数学和力学, 1994,15(6): 555-563.(XIONG Jian-gang, YI Fan, LI Jun. The influence of topography on the nonlinear interaction of Rossby waves in the barotropic atmosphere[J]. Applied Mathematics and Mechanics,1994,15(6): 555-563.(in Chinese))
    [13]
    吕克利. 大地形与正压Rossby孤立波[J]. 气象学报, 1987,45(3): 267-273.(L Ke-li. The effects of orography on the solitary Rossby waves in a barotropic atmosphere[J]. Acta Meteorologica Sinica,1987,45(3): 267-273.(in Chinese))
    [14]
    吕克利. 大地形与正压Rossby孤立波——弱二次切变基本气流[J]. 气象学报, 1988,〖STHZ〗 46(4): 412-420.(L Ke-li. Large orography and barotropic solitary Rossby waves—weak quadric shearing basic flow[J]. Acta Meteorologica Sinica , 1988,〖STHZ〗 46(4): 412-420.(in Chinese))
    [15]
    刘式适, 谭本馗. 考虑β变化下的Rossby波[J]. 应用数学和力学, 1992,〖STHZ〗 13(1): 35-44.(LIU Shi-kuo, TAN Ben-kui. Rossby waves with the change of β[J]. Applied Mathematics and Mechanics,1992,13(1): 35-44.(in Chinese))
    [16]
    罗德海. 考虑β随纬度变化下的Rossby孤立波与偶极子阻塞[J]. 应用气象学报, 1995, 6(2): 220-227.(LUO De-hai. Solitary Rossby waves with the beta parameter and dipole blocking[J]. Quarterly Journal of Applied Meteorology,1995,6(2): 220-227.(in Chinese))
    [17]
    Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer-Verlag New York Inc, 1987: 108-109.
    [18]
    Kuo H L. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere[J]. Journal of the Atmospheric Sciences,1949,6(2): 105-122.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1130) PDF downloads(471) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return