ZHANG Peng-kun, LI Ye. Investigation on Structural Dynamic Responses of Vertical-Axis Tidal Current Turbines[J]. Applied Mathematics and Mechanics, 2017, 38(6): 663-675. doi: 10.21656/1000-0887.370267
Citation: ZHANG Peng-kun, LI Ye. Investigation on Structural Dynamic Responses of Vertical-Axis Tidal Current Turbines[J]. Applied Mathematics and Mechanics, 2017, 38(6): 663-675. doi: 10.21656/1000-0887.370267

Investigation on Structural Dynamic Responses of Vertical-Axis Tidal Current Turbines

doi: 10.21656/1000-0887.370267
  • Received Date: 2016-09-01
  • Rev Recd Date: 2017-05-09
  • Publish Date: 2017-06-15
  • The 3D numerical analysis on the blade dynamic responses of the vertical-axis tidal turbines was presented based on the discrete vortex method of University of British Columbia (DVM-UBC) and the geometrically exact beam theory (GEBT). For the first time the GEBT was used to perform the dynamic analysis for tidal current turbines. Compared with the traditional 3D finite element method, the proposed method has advantages of saving computing cost, easily building the model, high calculation accuracy and so on. In the modal analysis, the obtained natural frequencies of the single blade and the entire turbine with various height-to-radius (H/R) ratios show that, the arm size has larger influence on the frequency than the blade size. In the transient dynamic analysis, the deflections at blade tips in one rotation cycle with various H/R ratios were calculated. According to the design optimization of the turbine geometry, it is found that when the H/R ratio is greater than 3.0, the maximum blade deflection will go beyond the critical blade deflection, which means strength failure of the turbine blades.
  • loading
  • [1]
    Pelc R, Fujita R M. Renewable energy from the ocean[J]. Marine Policy,2002,26(6): 471-479.
    [2]
    Twidell J, Weir T. Renewable Energy Resources [M]. Routledge, 2015.
    [3]
    Cory K S, Swezey B G. Renewable portfolio standards in the states: balancing goals and implementation strategies[R]. National Renewable Energy Laboratory, 2007.
    [4]
    Fraenkel P L. Tidal current energy technologies[J]. Ibis,2006,148(S1): 145-151.
    [5]
    Lang C. Harnessing tidal energy takes new turn[J]. IEEE Spectrum,2003,40(9): 13.
    [6]
    LI Ye, Calisal S M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine[J]. Renewable Energy,2010,35(10): 2325-2334.
    [7]
    LI Ye, Calisal S M. A discrete vortex method for simulating a stand-alone tidal-current turbine: modeling and validation[J]. Journal of Offshore Mechanics and Arctic Engineering,2010,132(3): 031102. doi: 10.1115/1.4000499.
    [8]
    Bahaj A S, Batten W M J, McCann G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines[J]. Renewable Energy,2007,32(15): 2479-2490.
    [9]
    Batten W M J, Bahaj A S, Molland A F, et al. Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines[J]. Ocean Engineering,2007,34(7): 1013-1020.
    [10]
    Calcagno G, Salvatore F, Greco L, et al. Experimental and numerical investigation of an innovative technology for marine current exploitation: the Kobold turbine[C]// The Sixteenth International Offshore and Polar Engineering Conference.San Francisco, California, USA: International Society of Offshore and Polar Engineers, 2006.
    [11]
    Ponta F L, Jacovkis P M. A vortex model for Darrieus turbine using finite element techniques[J]. Renewable Energy,2001,24(1): 1-18.
    [12]
    Young Y L, Motley M R, Yeung R W. Three-dimensional numerical modeling of the transient fluid-structural interaction response of tidal turbines[J]. Journal of Offshore Mechanics and Arctic Engineering,2010,132(1): 011101. doi: 10.1115/1.3160536.
    [13]
    康海贵, 郭伟. 竖轴水轮机三维水动力响应的数值模拟[J]. 太阳能学报, 2013,34(3): 537-541. (KANG Hai-gui, GUO Wei. Three dimensional numerical simulation for hydrodynamic response of vertical axis tidal current turbine[J]. Acta Energiae Solaris Sinica,2013,34(3): 537-541. (in Chinese))
    [14]
    张亮, 王树齐, 马勇, 等. 潮流能水平轴叶轮纵摇运动水动力分析[J]. 哈尔滨工程大学学报, 2015,36(3): 307-311. (ZHANG Liang, WANG Shu-qi, MA Yong, et al. The pitch hydrodynamic analysis of tidal current energy horizontal axis impller[J]. Journal of Harbin Engineering University,2015,36(3): 307-311. (in Chinese))
    [15]
    YU Wen-bin, Blair M. GEBT: a general-purpose nonlinear analysis tool for composite beams[J]. Composite Structures,2012,94(9): 2677-2689.
    [16]
    WANG Qi, YU Wen-bin, Sprague M A. Geometric nonlinear analysis of composite beams using Wiener-Milenkovic parameters[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Co-Located Events . Boston, Massachusetts, 2013: 8-11.
    [17]
    Hodges D H. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams[J]. AIAA Journal,2003,41(6): 1131-1137.
    [18]
    LI Ye, Calisal S M. Preliminary results of a vortex method for stand-alone vertical axis marine current turbine[C]// The 26th ASME International Conference on Offshore Mechanics and Arctic Engineering.San Diego, California, USA, 2007.
    [19]
    Reissner E. On one-dimensional large-displacement finite-strain beam theory[J]. Studies in Applied Mathematics,1973,52(2): 87-95.
    [20]
    YU Wen-bin. Manual of GEBT[Z/OL]. 2011. [2017-05-15]. https://zh.scribd.com/document/288507720/GEBT-Manual.
    [21]
    Danielson D A, Hodges D H. Nonlinear beam kinematics by decomposition of the rotation tensor[J]. Journal of Applied Mechanics,1987,54(2): 258-262.
    [22]
    Berdichevskiǐ V L. Variational-asymptotic method of constructing a theory of shells: PMM vol 43, no 4, 1979, pp 664-687[J]. Journal of Applied Mathematics and Mechanics,1979,43(4): 711-736.
    [23]
    YU Wen-bin. Variational asymptotic modeling of composite dimensionally reducible structures[D]. PhD Thesis. Atlanta: Georgia Institute of Technology, 2002.
    [24]
    YU Wen-bin, Hodges D H, Ho J C. Variational asymptotic beam sectional analysis—an updated version[J]. International Journal of Engineering Science,2012,59: 40-64.
    [25]
    Cesnik C E S, Hodges D H. VABS: a new concept for composite rotor blade cross-sectional modeling[J]. Journal of the American Helicopter Society,1997,42(1): 27-38.
    [26]
    Hodges D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams[J]. International Journal of Solids and Structures,1990,26(11): 1253-1273.
    [27]
    Hodges D H. Nonlinear Composite Beam Theory [M]. Lu F K. Progress in Astronautics and Aaeronautics,Vol 213. Reston, Virginia: American Institute of Aeronautics and Astronautics Inc, 2006: 304.
    [28]
    冯康,沦间断有限元的理论,计算数学,1,4(1979)378-385.
    [29]
    YU Wen-bin, Hodges D H. Generalized Timoshenko theory of the variational asymptotic beam sectional analysis[J]. Journal of the American Helicopter Society,2005,50(1): 46-55.
    [30]
    Rosenhead L. The formation of vortices from a surface of discontinuity[J]. Proceedings of the Royal Society of London(Series A): Containing Papers of a Mathematical and Physical Character,1931,134(823): 170-192.
    [31]
    Wong H L. Slender ship procedures that include the effects of yaw, vortex shedding and density stratification[D]. PhD Thesis. Vancouver: University of British Columbia, 1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (900) PDF downloads(890) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return