XIAO Jing, LIU Chang, WANG Yong. A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem[J]. Applied Mathematics and Mechanics, 2017, 38(6): 708-714. doi: 10.21656/1000-0887.370268
Citation: XIAO Jing, LIU Chang, WANG Yong. A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem[J]. Applied Mathematics and Mechanics, 2017, 38(6): 708-714. doi: 10.21656/1000-0887.370268

A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem

doi: 10.21656/1000-0887.370268
Funds:  The National Natural Science Foundation of China(11572145;11202090);China Postdoctoral Science Foundation(2014M560203)
  • Received Date: 2016-09-05
  • Rev Recd Date: 2016-09-30
  • Publish Date: 2017-06-15
  • With the differential geometry method, a geometric explanation based on the Frobenius theorem for characteristic equations of 1st-order partial differential equations was presented. According to the Frobenius theorem, the characteristic equations can be deduced directly from the 1st-order partial differential equations. Based on this, how to use the geometric method to find the corresponding Hamilton-Jacobi equations from Hamiltonian canonical equations was discussed. This method could be utilized to address the nonconservative or nonholonomic Hamiltonian mechanical problems. The classical Hamilton-Jacobi method is only a special case of this method.
  • loading
  • [1]
    Arnold V I. Mathematical Methods of Classical Mechanics [M]. New York: Springer-Verlag, 1978: 161-271.
    [2]
    陈滨. 分析动力学[M]. 第2版. 北京: 北京大学出版社, 2012: 445-464.(CHEN Bin. Analytic Dynamics [M]. 2nd ed. Beijing: Peking University Press, 2012: 445-464.(in Chinese))
    [3]
    梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013: 272-287.(MEI Feng-xiang. Analytical Mechanics [M]. Beijing: Beijing Institute of Technology Press, 2013: 272-287.(in Chinese))
    [4]
    Marmo G, Morandi G, Mukunda N. A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations[J]. Rivista del Nuovo Cimento,1990,13(8): 1-74.
    [5]
    Barbero-Linán M, de León M, de Diego D M. Lagrangian submanifolds and the Hamilton-Jacobi equation[J]. Monatshefte für Mathematik,2013,171(3): 269-290.
    [6]
    Marmo G, Morandi G, Mukunda N. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics[J]. Journal of Geometric Mechanics,2009,1(3): 317-355.
    [7]
    Kim J H, Lee H W. Canonical transformations and the Hamilton-Jacobi theory in quantum mechanics[J]. Canadian Journal of Physics,1999,77(6): 411-425.
    [8]
    Fleming W H, Rishel R W. Deterministic and Stochastic Optimal Control [M]. Berlin: Springer, 1975: 80-105.
    [9]
    Fedkiw R P, Aslam T, Merrima B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method)[J]. Journal of Computational Physics,1999,152(2): 457-492.
    [10]
    Courant R, Hilbert D. Methods of Mathematical Physics [M]. Vol2. New York: John Wiley & Sons, 1989: 62-153.
    [11]
    Levine H. Partial Differential Equation [M]. Vol6. Boston: International Press, 1997: 91-134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1662) PDF downloads(668) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return