Citation: | XIAO Jing, LIU Chang, WANG Yong. A Geometric Explanation of Hamilton-Jacobi Methods Based on the Frobenius Theorem[J]. Applied Mathematics and Mechanics, 2017, 38(6): 708-714. doi: 10.21656/1000-0887.370268 |
[1] |
Arnold V I. Mathematical Methods of Classical Mechanics [M]. New York: Springer-Verlag, 1978: 161-271.
|
[2] |
陈滨. 分析动力学[M]. 第2版. 北京: 北京大学出版社, 2012: 445-464.(CHEN Bin. Analytic Dynamics [M]. 2nd ed. Beijing: Peking University Press, 2012: 445-464.(in Chinese))
|
[3] |
梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013: 272-287.(MEI Feng-xiang. Analytical Mechanics [M]. Beijing: Beijing Institute of Technology Press, 2013: 272-287.(in Chinese))
|
[4] |
Marmo G, Morandi G, Mukunda N. A geometrical approach to the Hamilton-Jacobi form of dynamics and its generalizations[J]. Rivista del Nuovo Cimento,1990,13(8): 1-74.
|
[5] |
Barbero-Linán M, de León M, de Diego D M. Lagrangian submanifolds and the Hamilton-Jacobi equation[J]. Monatshefte für Mathematik,2013,171(3): 269-290.
|
[6] |
Marmo G, Morandi G, Mukunda N. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics[J]. Journal of Geometric Mechanics,2009,1(3): 317-355.
|
[7] |
Kim J H, Lee H W. Canonical transformations and the Hamilton-Jacobi theory in quantum mechanics[J]. Canadian Journal of Physics,1999,77(6): 411-425.
|
[8] |
Fleming W H, Rishel R W. Deterministic and Stochastic Optimal Control [M]. Berlin: Springer, 1975: 80-105.
|
[9] |
Fedkiw R P, Aslam T, Merrima B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows(the ghost fluid method)[J]. Journal of Computational Physics,1999,152(2): 457-492.
|
[10] |
Courant R, Hilbert D. Methods of Mathematical Physics [M]. Vol2. New York: John Wiley & Sons, 1989: 62-153.
|
[11] |
Levine H. Partial Differential Equation [M]. Vol6. Boston: International Press, 1997: 91-134.
|