LEI Zhen-yu, LIU Ming. Waterproofness Optimization for Elastic Rubber Gaskets in Shield Tunnels With Random Parameters[J]. Applied Mathematics and Mechanics, 2017, 38(8): 899-910. doi: 10.21656/1000-0887.370289
 Citation: LEI Zhen-yu, LIU Ming. Waterproofness Optimization for Elastic Rubber Gaskets in Shield Tunnels With Random Parameters[J]. Applied Mathematics and Mechanics, 2017, 38(8): 899-910.

# Waterproofness Optimization for Elastic Rubber Gaskets in Shield Tunnels With Random Parameters

##### doi: 10.21656/1000-0887.370289
• Rev Recd Date: 2017-06-08
• Publish Date: 2017-08-15
• Geometric parameters of elastic rubber gaskets in shield tunnels often present stochasticity influenced by the manufacturing process. Accordingly, the waterproof performance of elastic rubber gaskets will be affected. The coordinates of the hole center, the hole diameter, the section width and height were selected as the input random variables, and the sensitivity values with respect to these random parameters of the gasket’s waterproof performance were obtained by means of the ANSYS PDS module. The results show that the hole diameter has larger effect on the closure pressure and the contact stress than other geometric parameters. At the same time, the vertical position of the hole has greater influence than the horizontal one. On this basis, the closure pressure and the contact stress on the lower surface were selected as state variables, and the maximum contact stress was deemed as the objective function with the closure pressure not higher than a set value. The ANSYS design optimization module was used to conduct the parameter optimization for rubber gaskets, and give a new optimal gasket section geometry for one shield tunnel. The full-size test results verify the reliability of the optimal analysis.
•  [1] 雷震宇. 盾构隧道管片橡胶密封垫的优化设计方法[J]. 地下空间与工程学报, 2010,6(4): 770-774.(LEI Zhen-yu. An optimal design approach for the rubber sealing gasket in shield tunneling[J]. Chinese Journal of Underground Space and Engineering,2010,6(4): 770-774.(in Chinese)) [2] 罗驰, 雷震宇. 孔洞排布型式对盾构隧道橡胶密封垫的受力差异及稳定性分析[J]. 城市轨道交通研究, 2015(5): 44-47.(LUO Chi, LEI Zhen-yu. Stress difference and stability of shield tunnel rubber sealing gasket induced by different hole arrangements[J]. Urban Mass Transit,2015(5): 44-47.(in Chinese)) [3] 向科, 石修巍. 盾构管片弹性密封垫断面设计与优化[J]. 地下空间与工程学报, 2008,4(2): 361-364.(XIANG Ke, SHI Xiu-wei. Design and optimization of elastic gasket section of shield tunnel lining[J]. Chinese Journal of Underground Space and Engineering,2008,4(2): 361-364.(in Chinese)) [4] 陆明, 雷震宇, 张勇, 等. 上海长江隧道衬砌接缝和连接通道的防水试验研究[J]. 地下工程与隧道, 2008(4): 12-16.(LU Ming, LEI Zhen-yu, ZHANG Yong, et al. Waterproofing test of lining joint and cross passage of Shanghai Yangtze River Tunnel[J]. Underground Engineering and Tunnels,2008(4): 12-16.(in Chinese)) [5] 赵运臣, 肖龙鸽, 刘招伟, 等. 武汉长江隧道管片接缝防水密封垫设计与试验研究[J]. 隧道建设,2008,28(5): 570-575.(ZHAO Yun-cheng, XIAO Long-ge, LIU Zhao-wei, et al. Experiment study and design on the water tight seal for reinforced concrete segment joint of Wuhan Yangtze River Tunnel[J]. Tunnel Construction,2008,28(5): 570-575.(in Chinese)) [6] 高娟, 罗奇峰, 车伟. 蒙特卡罗法理论及其在ANSYS中的实现[J]. 青岛理工大学学报, 2008,29(4): 18-22.(GAO Juan, LUO Qi-feng, CHE Wei. Theory of Monte-Carlo method and implementation in ANSYS[J]. Journal of Qingdao Technological University,2008,29(4): 18-22.(in Chinese)) [7] 张义民, 陈塑寰, 周振平, 等. 静力分析的一般随机摄动法[J]. 应用数学和力学, 1995,16(8): 709-714.(ZHANG Yi-min, CHEN Su-huan, ZHOU Zhen-ping, et al. Generalized probabilistic perturbation method for static analysis[J]. Applied Mathematics and Mechanics,1995,16(8): 709-714.(in Chinese)) [8] Reh S, Beley J-D, Mukherjee S, et al. Probabilistic finite element analysis using ANSYS[J]. Structural Safety,2006,28(1/2): 17-43. [9] L·R·G·特雷劳尔. 橡胶弹性物理学[M]. 王梦蛟, 王培国, 薛广智, 译. 北京: 化学工业出版社, 1982.(Treloar L R G. The Physics of Rubber Elasticity [M]. WANG Meng-jiao, WANG Pei-guo, XUE Guang-zhi, transl. Beijing: Chemical Industry Press, 1982.(in Chinese)) [10] 郑明军, 谢基龙. 压缩状态下橡胶件大变形有限元分析[J]. 北方交通大学学报, 2001,25(1): 76-79.(ZHENG Ming-jun, XIE Ji-long. Finite element analysis of large deformation of compressed rubber component[J]. Journal of Northern Jiaotong University,2001,25(1): 76-79.(in Chinese)) [11] 橡胶制品的公差 第1部分: 尺寸公差: GB/T 3672.1—2002[S]. 北京: 中国标准出版社, 2002.(Rubber—tolerance of products—part 1: size tolerance: GB/T 3672.1—2002[S]. Beijing: Standards Press of China, 2002.(in Chinese)) [12] 上海申通地铁公司. 上海地铁盾构管片弹性橡胶密封垫（三元乙丙）生产工艺及产品标准: STB-DQ-010201[S]. 2007.(Shanghai Shentong Metro Group Co Ltd. Production technology and product standard of elastic rubber gasket (EPDM) in Shanghai metro shield tunnel lining: STB-DQ-010201[S]. 2007.(in Chinese)) [13] Baucells M, Borgonovo E. Invariant probabilistic sensitivity analysis[J]. Management Science,59(11): 2536-2549. [14] Das P, Shrubsole C, Jones B, et al. Using probabilistic sampling-based sensitivity analyses for indoor air quality modelling[J]. Building and Environment,2014,78: 171-182. [15] 屠义强, 江克斌, 胡业平, 等. 基于随机有限元方法的结构响应灵敏度分析[J]. 解放军理工大学学报 (自然科学版), 2001,2(2): 78-81.(TU Yi-qiang, JIANG Ke-bin, HU Ye-ping, et al. Analyzing sensitivity of structure response based on SFEM[J]. Journal of PLA University of Science and Technology（Natural Science Edition）,2001,2(2): 78-81.(in Chinese)) [16] 杨大彬, 张毅刚, 吴金志. 基于ANSYS的灵敏度分析及其在单层网壳中的应用[J]. 世界地震工程, 2009,25(4): 87-91.(YANG Da-bin, ZHANG Yi-gang, WU Jin-zhi. Sensitivity analysis based on ANSYS and its application to single-layer reticulated shell[J]. World Earthquake Engineering,2009,25(4): 87-91.(in Chinese)) [17] 商跃进. 有限元原理与ANSYS应用指南[M]. 北京: 清华大学出版社, 2005: 280-281.(SHANG Yue-jin. The Finite Element Theory and ANSYS Application Guide [M]. Beijing: Tsinghua University Press, 2005: 280-281.(in Chinese)) [18] Cheng K T, Olhoff N. An investigation concerning optimal design of solid elastic plates[J]. International Journal of Solids and Structures,1981,17(3): 305-323. [19] 杨德庆, 隋允康, 刘正兴, 等. 应力和位移约束下连续体结构拓扑优化[J]. 应用数学和力学, 2000,21(1): 17-24.(YANG De-qing, SUI Yun-kang, LIU Zheng-xing, et al. Topology optimization design of continuum structures under stress and displacement constraints[J]. Applied Mathematics and Mechanics,2000,21(1): 17-24.(in Chinese)) [20] Abdi R E, Touratier M, Convert P. Optimal design for minimum weight in a cracked pressure vessel of a turboshaft[J]. Communications in Numerical Methods in Engineering,1996,12(5): 271-280.

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142