WEN Fen-qiang, DENG Zi-chen, WEI Yi, LI Qing-jun. Dynamic Modelling and Symplectic Solution of Coupled Orbit & Attitude for Solar Sail Towers[J]. Applied Mathematics and Mechanics, 2017, 38(7): 762-768. doi: 10.21656/1000-0887.370321
 Citation: WEN Fen-qiang, DENG Zi-chen, WEI Yi, LI Qing-jun. Dynamic Modelling and Symplectic Solution of Coupled Orbit & Attitude for Solar Sail Towers[J]. Applied Mathematics and Mechanics, 2017, 38(7): 762-768.

# Dynamic Modelling and Symplectic Solution of Coupled Orbit & Attitude for Solar Sail Towers

##### doi: 10.21656/1000-0887.370321
Funds:  The National Natural Science Foundation of China(11432010; 11572254)
• Rev Recd Date: 2017-05-16
• Publish Date: 2017-07-15
• A simplified model for solar sail towers was established. Firstly, the dynamic equations for the system were transformed from the Lagrangian system into the Hamiltonian system, and the canonical constrained Hamiltonian equations were obtained. Then the dynamic characteristics of the coupled orbit-attitude system of the solar sail tower were analyzed with the symplectic Runge-Kutta method and the Zu-class method. Energy and constraint conservation problems of the schemes were also investigated. Finally, the dynamic characteristics of the system were numerically simulated. The results illustrate the effectiveness of the proposed method.
•  [1] 杨阳, 张逸群, 王东旭, 等. SSPS太阳能收集系统研究现状及发展趋势[J]. 宇航学报, 2016,37(1): 21-28.(YANG Yang, ZHAGN Yi-qun, WANG Dong-xu, et al. Status and trend of the solar energy collection system for space solar power station[J]. Journal of Astronautics,2016,37(1): 21-28.(in Chinese)) [2] 侯欣宾, 王力, 朱耀平, 等. 国际空间太阳能电站发展现状[J]. 太阳能学报，2009,30(10): 1263-1268.(HOU Xin-bin, WANG Li, ZHU Yao-ping, et al. Summary of the international space solar power systems[J]. Acta Energiae Solaris Sinica,2009,30(10): 1263-1268.(in Chinese)) [3] 王立, 侯欣宾. 空间太阳能电站的关键技术及发展建议[J]. 航天器环境工程, 2014,31(4): 343-350.(WANG Li, HOU Xin-bin. Key technologies and some suggestions for the development of space solar power station[J]. Spacecraft Environment Engineering,2014,31(4): 343-350.(in Chinese)) [4] 吴永, 杜思义, 胡继云, 等. 约束多体系统动力学方程的辛算法[J]. 重庆大学学报, 2004,27(6): 102-105.(WU Yong, DU Si-yi, HU Ji-yun, et al. Symplectic methods of the dynamic equations of constrained multibody systems[J]. Journal of Chongqing University,2004,27(6): 102-105.(in Chinese)) [5] Hairer E, Lubich C, Wanner G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations [M]. Berlin: Springer, 2006. [6] Hairer E， Wanner G. Solving Ordinary Differential Equations Ⅱ: Stiff and Differential-Algebraic Problems [M]. 2nd ed. Berlin: Springer, 1996. [7] 钟万勰, 高强, 彭海军. 经典力学——辛讲[M]. 大连: 大连理工大学出版社, 2013.(ZHONG Wan-xie, GAO Qiang, PENG Hai-jun. Classical Mechanics—Its Symplectic Description [M]. Dalian: Dalian University of Technology Press, 2013.(in Chinese)) [8] 钟万勰, 高强. 约束动力系统的分析结构力学积分[J]. 动力学与控制学报, 2006,4(3): 193-200.(ZHONG Wan-xie, GAO Qiang. Integration of constrained dynamical system via analytical structural mechanics[J]. Journal of Dynamics and Control,2006,4(3):193-200.(in Chinese)) [9] 吴锋, 高强, 钟万勰. 基于祖冲之类方法的多体动力学方程保能量保约束积分[J]. 计算机辅助工程, 2014,23(1): 64-68, 75.(WU Feng, GAO Qiang, ZHONG Wan-xie. Energy and constraint preservation integration for multibody equations based on ZU Chong-zhi method[J]. Computer Aided Engineering,2014,23(1): 64-68, 75.(in Chinese)) [10] 吴锋, 钟万勰. 浅水问题的约束Hamilton变分原理及祖冲之类保辛算法[J]. 应用数学和力学, 2016,37(1): 1-13.(WU Feng, ZHONG Wan-xie. The constrained Hamilton variational principle for shallow water problems and the Zu-type symplectic algorithm[J]. Applied Mathematics and Mechanics,2016,37(1): 1-13.(in Chinese)) [11] WEI Yi, DENG Zi-chen, WANG Yan, et al. An improved energy and constraint conserving algorithm for constrained Hamiltonian systems[J]. Journal of Computational and Theoretical Nanoscience,2016,13(1): 1055-1062. [12] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科技出版社, 2003: 185-205.(FENG Kang, QIN Meng-zhao. Symplectic Geometric Algorithms for Hamiltonian Systems [M]. Hangzhou: Zhejiang Science and Technology Press, 2003: 185-205.(in Chinese)) [13] FENG Kang, QIN Meng-zhao. Hamiltonian algorithms for Hamiltonian dynamical systems[J]. Progress in Natural Science,1991,1(2): 105-116. [14] 李庆军, 叶学华, 王博, 等. 辛Runge-Kutta方法在卫星交会对接中的非线性动力学应用研究[J]. 应用数学和力学, 2014,35(12): 1299-1307.(LI Qing-jun, YE Xue-hua, WANG Bo, et al. Nonlinear dynamic behavior of the satellite rendezvous and docking based on the symplectic Runge-Kutta method[J]. Applied Mathematics and Mechanics,2014,35(12): 1299-1307.(in Chinese)) [15] 王新栋, 胡伟鹏, 邓子辰. 空间太阳能电站太阳能接收器二维展开过程的保结构分析[J]. 动力学与控制学报, 2015,13(6): 406-409.(WANG Xin-dong, HU Wei-peng, DENG Zi-chen. Structure-preserving analysis of 2D deploying process for solar power receiver of solar power satellite[J]. Journal of Dynamics and Control,2015,13(6): 406-409.(in Chinese)) [16] 魏乙, 邓子辰, 李庆军, 等. 绳系空间太阳能电站动力学响应分析[J]. 宇航学报, 2016,37(9): 1041-1048.(WEI Yi, DENG Zi-chen, LI Qing-jun, et al. Analysis of dynamic response of tethered space solar power station[J]. Journal of Astronautics,2016,37(9): 1041-1048.(in Chinese))

### Catalog

###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142