YANG Yu-hong, LI Fei. Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012
Citation: YANG Yu-hong, LI Fei. Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2017, 38(5): 526-538. doi: 10.21656/1000-0887.380012

Sufficient Optimality Conditions for Nonsmooth Semi-Infinite Multiobjective Optimization Problems

doi: 10.21656/1000-0887.380012
Funds:  The National Natural Science Foundation of China(11431004;11601248)
  • Received Date: 2017-01-10
  • Rev Recd Date: 2017-03-23
  • Publish Date: 2017-05-15
  • The nonsmooth semi-infinite multiobjective optimization problem (SIMOP) was addressed and its optimality conditions were discussed. First, the Clarke F-convexity hypothesis was imposed on some combinations of the objective functions and the constraint functions, the sufficient optimality conditions for the (weakly) efficient solution to the SIMOP were established. Next, the sufficient optimality conditions for the optimal solution to its scalar problem were obtained with the ChankongHaimes method.
  • loading
  • [1]
    Ehrgott M. Multicriteria Optimization [M]. 2nd ed. Berlin: Springer, 2005.
    [2]
    Jahn J. Vector Optimization: Theory, Applications, and Extensions [M]. 2nd ed. Berlin: Springer-Verlag, 2011.
    [3]
    戎卫东, 杨新民. 向量优化及其若干进展[J]. 运筹学学报, 2014,18(1): 9-38.(RONG Wei-dong, YANG Xin-min. Vector optimization and its developments[J]. Operations Research Transactions,2014,18(1): 9-38.(in Chinese))
    [4]
    Goberna M A, López M A. Linear Semi-Infinite Optimization [M]. Chichester: John Wiley & Sons, 1998.
    [5]
    Reemtsen R, Rückmann J-J. Semi-Infinite Programming [M]. Dordrecht: Springer Science, 1998.
    [6]
    Caristi G, Ferrara M, Stefanescu A. Semi-infinite multiobjective programming with generalized invexity[J]. Mathematical Reports,2010,12(62): 217-233.
    [7]
    Glover B M, Jeyakumar V, Rubinov A M. Dual conditions characterizing optimality for convex multi-objective programs[J]. Mathematical Programming,1999,84(1): 201-217.
    [8]
    Chuong T D, Kim D S. Nonsmooth semi-infinite multiobjective optimization problems[J].Journal of Optimization Theory and Applications,2014,160(3): 748-762.
    [9]
    Chuong T D, Yao J C. Isolated and proper efficiencies in semi-infinite vector optimization problems[J]. Journal of Optimization Theory and Applications,2014,162(2): 447-462.
    [10]
    Kanzi N, Nobakhtian S. Optimality conditions for nonsmooth semi-infinite multiobjective programming[J]. Optimization Letters,2014,8(4): 1517-1528.
    [11]
    Kanzi N. On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data[J]. Optimization Letters,2015,9(6): 1121-1129.
    [12]
    Caristi G, Kanzi N. Karush-Kuhn-Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming[J]. International Journal of Mathematical Analysis,2015,9(39): 1929-1938.
    [13]
    Kanzi N. Karush-Kuhn-Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems[J]. Journal of Mathematical Extension,2015,9(4): 45-56.
    [14]
    Piao G R, Jiao L G, Kim D S. Optimality conditions in nonconvex semi-infinite multiobjective optimization[J]. Journal of Nonlinear and Convex Analysis,2016,17(1): 167-175.
    [15]
    Golestani M, Nobakhtian S. Nonsmooth multiobjective programming: strong Kuhn-Tucker conditions[J]. Positivity,2013,17(3): 711-732.
    [16]
    Clarke F H. Optimization and Nonsmooth Analysis [M]. Philadelphia: SIAM, 1990.
    [17]
    Kanniapan P. Necessary conditions for optimality of nondifferentiable convex multiobjective programming[J]. Journal of Optimization Theory and Applications,1983,40(2): 167-174.
    [18]
    Hanson M A. On sufficiency of the Kuhn-Tucher conditions[J]. Journal of Mathematical Analysis and Applications,1981,80(2): 545-550.
    [19]
    Craven D. Invex functions and constrained local minima[J]. Bulletin of the Australian Mathematical Society,1981,24(3): 357-366.
    [20]
    Hanson M A, Mond B. Further generalization of convexity in mathematical programming[J]. Journal of Information and Optimization Sciences,1982,3(1): 25-32.
    [21]
    Yang X M, Yang X Q, Teo K L. Generalized invexity and generalized invariant monotonicity[J]. Journal of Optimization Theory and Applications,2003,117(3): 607-625.
    [22]
    彭再云, 汪达成. 强预不变凸函数的新性质及应用[J]. 重庆交通大学学报(自然科学版), 2008,27(5): 839-842.(PENG Zai-yun, WANG Da-cheng. New characteristics and application of strictly pre-invex functions[J]. Journal of Chongqing Jiaotong University(Natural Science),2008,27(5): 839-842.(in Chinese))
    [23]
    彭再云, 李永红. 半严格- G -半预不变凸性与最优化[J]. 应用数学和力学, 2013,34(8): 836-845.(PENG Zai-yun, LI Yong-hong. Semistrict-G-semi-preinvexity and optimization[J].Applied Mathematics and Mechanics,2013,34(8): 836-845.(in Chinese))
    [24]
    Yang X M, Yang X Q, Teo K L, et al. Second order symmetric duality in non-differentiable multiobjective programming with F-convexity[J]. European Journal of Operational Research,2005,164(2): 406-416.
    [25]
    Goberna M A, Guerra-Vazquez F, Todorov M I. Constraint qualifications in convex vector semi-infinite optimization[J]. European Journal of Operational Research,2016,249(1): 32-40.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1053) PDF downloads(871) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return