LI Xu, WAN Qiang, SHI Ping’an. A Theoretical Model for MagnetoMechanical Coupling Behaviors of Magnetorheological Elastomers[J]. Applied Mathematics and Mechanics, 2018, 39(1): 92-103. doi: 10.21656/1000-0887.380021
Citation: LI Xu, WAN Qiang, SHI Ping’an. A Theoretical Model for MagnetoMechanical Coupling Behaviors of Magnetorheological Elastomers[J]. Applied Mathematics and Mechanics, 2018, 39(1): 92-103. doi: 10.21656/1000-0887.380021

A Theoretical Model for MagnetoMechanical Coupling Behaviors of Magnetorheological Elastomers

doi: 10.21656/1000-0887.380021
Funds:  The National Natural Science Foundation of China(11372295)
  • Received Date: 2017-01-17
  • Rev Recd Date: 2017-04-03
  • Publish Date: 2018-01-15
  • Based on the magnetic dipole interaction theory, a theoretical model was proposed to describe the magneto-mechanical coupling behaviors of magnetorheological elastomers with the principle of minimum potential energy. In this model, the fully coupled interaction among all particles and chains was considered according to the micro-structure of magnetorheological elastomers. The energy equations of magnetic interaction and the elastic potential energy equations based on the Mooney-Rivlin model were derived respectively. Then a theoretical model was developed to describe the stress-strain relationship of magnetorheological elastomers under uniaxial load. This model agrees well with existing experimental data and can be used to explain the micro-mechanism of magneto-induced stress. The results show that the mechanism of magneto-induced stress is closely related to the inner micro-structure, and the nonlinear property of magneto-induced stress mainly depends on the interaction among both particles and chains.
  • loading
  • [1]
    JOLLY M R, CARLSON J D, MUOZ B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials & Structures,1996,5(5): 607-614.
    [2]
    CHEN L, GONG X L, LI W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers[J]. Smart Materials & Structures,2007,16(6):2645-2650.
    [3]
    许阳光, 龚兴龙, 万强, 等. 磁敏智能软材料及磁流变机理[J]. 力学进展, 2015,45: 461-495.(XU Yangguang, GONG Xinglong, WAN Qiang, et al. Magneto-sensitive smart soft material and magnetorheological mechanism[J]. Advances in Mechanics,2015,45: 461-495.(in Chinese))
    [4]
    LI W, KOSTIDIS K, ZHANG X, et al. Development of a force sensor working with MR elastomers[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Singapore, 2009: 233-238.
    [5]
    BEHROOZ M, WANG Xiaojie, GORDANINEJAD F. Performance of a new magnetorheological elastomer isolation system[J]. Smart Materials & Structures,2014,23(4): 045014. DOI: 10.1088/0964-1726/23/4/045014.
    [6]
    LIU T Y, HU S H, LIU K H, et al. Preparation and characterization of smart magnetic hydrogels and its use for drug release[J]. Journal of Magnetism and Magnetic Materials,2006,304(1): e397-e399.
    [7]
    OTTAVIANI R A, ULICNY J C, GOLDEN M A. Magnetorheological nanocomposite elastomer for releasable attachment applications: US 6877193 B2[P]. 2005-04-12.
    [8]
    ELKINS J. Oxidative stability in surface modified magnetorheological elastomers[D]. Master Thesis. Reno: University of Nevada, 2005.
    [9]
    SHIGA T, OKADA A, KURAUCHI T. Magnetroviscoelastic behavior of composite gels[J]. Journal of Applied Polymer Science,1995,58(4): 787-792.
    [10]
    DAVIS L C. Model of magnetorheological elastomers[J]. Journal of Applied Physics,1999,85(6): 3348-3351.
    [11]
    VARGA Z, FILIPCSEI G, ZRNYI M. Magnetic field sensitive functional elastomers with tuneable elastic modulus[J]. Polymer,2005,47(1): 227-233.
    [12]
    MIKHAILOV V P, BAZINENKOV A M. Active vibration isolation platform on base of magnetorheological elastomers[J]. Journal of Magnetism and Magnetic Materials,2016,431: 266-268.
    [13]
    ROSENSWEIG B E. Ferrohydrodynamics [M]. Cambridge: Cambridge University Press, 1985.
    [14]
    SHEN Y, GOLNARAGHI M F, HEPPLER G R. Experimental research and modeling of magnetorheological elastomers[J]. Journal of Intelligent Material Systems & Structures,2004,15(1): 27-35.
    [15]
    LIU Taixiang, GONG Xinglong, XU Yangguang, et al. Simulation of magneto-induced rearrangeable microstructures of magnetorheological plastomers[J]. Soft Matter, 2013,9(42): 10069-10080.
    [16]
    IVANEYKO D, TOSHCHEVIKOV V P, SAPHIANNIKOVAM, et al. Magneto-sensitive elastomers in a homogeneous magnetic field: a regular rectangular lattice model[J]. Macromolecular Theory & Simulations,2011,20(6): 411-424.
    [17]
    IVANEYKO D, TOSHCHEVIKOV V, BORIN D, et al. Mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field: theory and experiment[J]. Macromolecular Symposia,2014,338(1): 96-107.
    [18]
    CHEN S W, LI R, ZHANG Z, et al. Micromechanical analysis on tensile modulus of structured magneto-rheological elastomer[J]. Smart Structures & Systems,2016,25(3): 035001. DOI: 10.1088/0964-1726/25/3/035001.
    [19]
    BELLAN C, BOSSIS G. Field dependence of viscoelastic properties of MR elastomers[J]. International Journal of Modern Physics B,2002,16(17/18): 2447-2453.
    [20]
    LI Yancheng, LI Jianchun. A highly adjustable base isolator utilizing magnetorheological elastomer: experimental testing and modeling[J]. Journal of Vibration & Acoustics, 2014,137(1): V001T03A010. DOI: 10.1115/1.4027626.
    [21]
    HAN Yi, HONG Wei, FAIDLEY L E. Coupled magnetic field and viscoelasticity of ferrogel[J]. International Journal of Applied Mechanics,2011,3(2): 259-278.
    [22]
    DANAS K, KANKANALA S V, TRIANTAFYLLIDIS N. Experiments andmodeling of iron-particle-filled magnetorheological elastomers[J]. Journal of the Mechanics and Physics of Solids,2012,60(1): 120-138.
    [23]
    GALIPEAU E, CASTAEDA P P. A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations[J]. Journal of the Mechanics & Physics of Solids,2013,61(4): 1065-1090.
    [24]
    NEDJAR B. A theory of finite strain magneto-poromechanics[J]. Journal of the Mechanics and Physics of Solids, 2015,84: 293-312.
    [25]
    孙书蕾, 毛建良, 彭雄奇. 考虑纤维弯曲刚度的橡胶-帘线复合材料各向异性超弹性本构模型[J]. 应用数学和力学, 2014,35(5): 471-477.(SUN Shulei, MAO Jianliang, PENG Xiongqi. An anisotropic hyperelastic constitutive model with fiber bending stiffness for cord-rubber composites[J]. Applied Mathematics and Mechanics,2014,35(5): 471-477.(in Chinese))
    [26]
    郭怡诚. 铁磁学[M]. 北京: 北京大学出版社, 2014.(GUO Yicheng. Ferromagnetism [M]. Beijing: Peking University Press, 2014.(in Chinese))
    [27]
    VICENTE J, BOSSIS G, LACIS S, et al. Permeability measurements in cobalt ferrite and carbonyl iron powders and suspensions[J]. Journal of Magnetism and Magnetic Materials,2002,251(1): 100-108.
    [28]
    胡友秋, 程福臻, 叶邦角. 电磁学与电动力学[M]. 北京: 科学出版社, 2013.(HU Youqiu, CHENG Fuzhen, YE Bangjiao.Electromagnetics and Electrodynamics[M]. Beijing: Science Press, 2013.(in Chinese))
    [29]
    QIN Qinghua, YANG Qingsheng. Macro-Micro Theory on Multi-Field Coupling Behavior of Heterogeneous Materials [M]. Beijing: Higher Education Press, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (986) PDF downloads(1412) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return