ZHOU Yangjing, FENG Zhiqiang, PENG Lei. Application of the Bi-Potential Integration Algorithm to Non-Associated Materials[J]. Applied Mathematics and Mechanics, 2018, 39(1): 11-28. doi: 10.21656/1000-0887.380139
Citation: ZHOU Yangjing, FENG Zhiqiang, PENG Lei. Application of the Bi-Potential Integration Algorithm to Non-Associated Materials[J]. Applied Mathematics and Mechanics, 2018, 39(1): 11-28. doi: 10.21656/1000-0887.380139

Application of the Bi-Potential Integration Algorithm to Non-Associated Materials

doi: 10.21656/1000-0887.380139
Funds:  The National Natural Science Foundation of China(11372260)
  • Received Date: 2017-05-23
  • Rev Recd Date: 2017-05-23
  • Publish Date: 2018-01-15
  • Given the formulation of material free energy, the bi-potential theory allows one to divide standard materials into 2 main categories: explicit or implicit. The Drucker-Prager (D-P) model was taken as an example, which typically describes non-associated materials through the constitutive cones. With a new description of the orthogonal law, the dual constitutive cones were proposed, which not only satisfy the constitutive law of the D-P model, but also meet the requirements of the implicit flow rules. On the basis of the D-P model, and according to the bi-potential theory, 5 forms of bi-potential functions were established: the elastic stage in rate form, the plastic stage in rate form, the elastic stage in incremental form, the plastic stage in incremental form and the elasto-plastic stage in incremental form. The bi-potential integration algorithm was then obtained. A numerical simulation example was given to verify the accuracy and stability of the bi-potential integration algorithm.
  • loading
  • [1]
    郑颖人, 孔亮, 刘元雪. 塑性本构理论与工程材料塑性本构关系[J]. 应用数学和力学, 2014,35(7): 713-722. (ZHENG Yingren, KONG Liang, LIU Yuanxue. Plastic constitutive relation and plastic constitutive theory for engineering materials[J]. Applied Mathematics and Mechanics,2014,35(7): 713-722.(in Chinese))
    [2]
    SMITH I M, GRIFFITHS D V. Programming the Finite Element Methods [M]. New York: John Wiley & Sons, 2014.
    [3]
    王记增, 陈伟球, 詹世革, 等. 第六届全国固体力学青年学者学术研讨会报告综述[J]. 力学学报, 2015,47(2): 372-380.(WANG Jizeng, CHEN Weiqiu, ZHAN Shige, et al. Review of the sixty national symposium on solid mechanics for young scholars[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(2): 372-380.(in Chinese))
    [4]
    姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012,45(3): 127-150.(YAO Yangping, ZHANG Bingyin, ZHU Jungao. Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal,2012,45(3): 127-150.(in Chinese))
    [5]
    朱维申, 赵成龙, 周浩, 等. 当前岩石力学研究中若干关键问题的思考与认识[J]. 岩石力学与工程学报, 2015,34(4): 649-658.(ZHU Weishen, ZHAO Chenglong, ZHOU Hao, et al. Discussion on several key issues in current of rock mechanics[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(4): 649-658.(in Chinese))
    [6]
    俞茂宏, 刘继明, YOSHIYA O D A, 等. 论岩土材料屈服准则的基本特性和创新[J]. 岩石力学与工程学报, 2007,26(9): 1745-1757.(YU Maohong, LIU Jiming, YOSHIYA O D A, et al. On basic characteristics and innovation of yield criteria for geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(9): 1745-1757.(in Chinese))
    [7]
    肖诗云, 林皋, 王哲. Drucker-Prager材料一致率型本构模型[J]. 工程力学, 2003,20(4): 147-151. (XIAO Shiyun, LIN Gao, WANG Zhe. A Drucker-Prager consistent rate-dependent model[J]. Engineering Mechanics,2003,20(4): 147-151.(in Chinese))
    [8]
    杨强, 杨晓君, 陈新. 基于D-P准则的理想弹塑性本构关系积分研究[J]. 工程力学, 2005,22(4): 15-19, 47.(YANG Qiang, YANG Xiaojun, CHEN Xin. On integration algorithms for perfect plasticity based on Drucker-Prager criterion[J].Engineering Mechanics,2005,22(4): 15-19, 47.(in Chinese))
    [9]
    POTTS D M, ZDRAVKOVIC L. Finite Element Analysis in Geotechnical Engineering [M]. London: Thomas Telford Publishing, 1999.
    [10]
    蒋明镜, 沈珠江. 理想弹塑性材料有限元计算算法比较研究[J]. 水利水运科学研究, 1998,1: 28-37. (JIANG Mingjing, SHEN Zhujiang. Study and comparison on the FEM computation methods used for the ideal elasto-plastic material[J]. Nanjing Hydraulic Research Institute,1998, 1: 28-37.(in Chinese))
    [11]
    SIMO J C, TAYLOR R L. Consistent tangent operators for rate-independent elasto-plasticity[J]. Computer Methods in Applied Mechanics and Engineering,1985,48(1): 101-118.
    [12]
    康国政. 非弹性本构理论及其有限元实现[M]. 成都: 西南交通大学出版社, 2010.(KANG Guozheng. Inelastic Constitutive Theory and Finite Element Implementation [M]. Chengdu: Southwest Jiaotong University Press, 2010.(in Chinese))
    [13]
    CLAUSEN J, DAMKILDE L, ANDERSEN L. An efficient return algorithm for non-associated plasticity with linear yield criteria in principal stress space[J]. Computers and Structures,2007,85(23/24): 1795-1807.
    [14]
    杨强, 冷旷代, 张小寒, 等. Drucker-Prager 弹塑性本构关系积分: 考虑非关联流动与各向同性硬化[J]. 工程力学, 2012,29(8): 165-171.(YANG Qiang, LENG Kuangdai, ZHANG Xiaohan, et al. An integration algorithm for Drucker-Prager elastic-plastic model with non-associated flow rule and isotropic hardening[J]. Engineering Mechanics,2012,29(8): 165-171.(in Chinese))
    [15]
    DE SAXCE G, FENG Z Q. New inequality and functional for contact with friction:the implicit standard material approach[J]. Mechanics of Structures and Machine s, 1991,19(3): 301-325.
    [16]
    DE SAXCE G. A generalization of Fenchel’s inequality and its applications to the constitutive law[J]. Comptes Rendus de l’Académie des Sciences,1992,314(2): 125-129.
    [17]
    DE SAXCE G. The bipotential method, a new variational and numerical treatment of the dissipative laws of materials[C]//10th International Conference on Mathematical and Computer Modelling and Scientific Computing . Boston, 1995.
    [18]
    WRIGGERS P. Computational Contact Mechanics [M]. Springer, 2006.
    [19]
    FENG Zhiqaing. 2D or 3D frictional contact algorithms and applications in a large deformation context[J]. International Journal for Numerical Methods in Biomedical Engineering,1995,11(5): 409-416.
    [20]
    DE SAXCE G, FENG Zhiqaing. The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms[J]. Mathematical and Computer Modeling,1998,28(4/8): 225-245.
    [21]
    PARISCH H. A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis[J]. International Journal for Numerical Methods in Engineering,1989,28(8): 1803-1812.
    [22]
    JOLI P, FENG Z Q. Uzawa and Newton algorithms to solve frictional contact problems within the bi-potential framework[J].International Journal for Numerical Methods in Engineering,2008,73(3): 317-330.
    [23]
    FENG Zhiqiang, RENAUD C, CROS J M, et al. A finite element finite-strain formulation for modeling colliding blocks of Gent materials[J].International Journal of Solids and Structures,2010,47(15): 2215-2222.
    [24]
    FENG Z Q, HJIAJ M, DE SAXC G, et al. Influence of frictional anisotropy on contacting surfaces during loading/unloading cycles[J].International Journal of Non-Linear Mechanics,2006,41(8): 936-948.
    [25]
    FENG Z Q, PEYRAUT F, HE Q C. Finite deformations of Ogden’s materials under impact loading[J]. International Journal of Non-Linear Mechanics,2006,41(4): 575-585.
    [26]
    MITCHELL G P, OWEN D R J. Numerical solutions for elastic-plastic problems[J]. Engineering Computations,1988,5(4): 274-284.
    [27]
    BOUSSHINE L, CHAABA A, DE SAXC G. Softening in stress-strain curve for Drucker-Prager non-associated plasticity[J]. International Journal of Plasticity,2001,17(1): 21-46.
    [28]
    BERGA A. Contribution to modeling of non associated law of soils with the bipotential method and its application in foundation area[C]//International Symposium on Characterization and Modeling of Materials and Structures, CMMS08.Tizi-Ouzou, Algeria, 2008.
    [29]
    BERGA A. Mathematical and numerical modeling of the non-associated plasticity of soils—part 1: the boundary value problem[J].International Journal of Non-Linear Mechanics,2012,47(1): 26-35.
    [30]
    ZHOU Yangjing, FENG Zhiqiang, XU W Y, Non-associated constitutive law of soils and its simulation based on the bi-potential theory[J].International Journal of Structural Analysis & Design,2014,1(4): 1-6.
    [31]
    BODOVILLE G, DE SAXCE G. Plasticity with non-linear kinematic hardening: modeling and shakedown analysis by the bipotential approach[J].European Journal of Mechanics: A/Solids,2001,20(1): 99-112.
    [32]
    BOUBY C, DE SAXC G, TRITSCH J B. Shakedown analysis: comparison between models with the linear unlimited, linear limited and non-linear kinematic hardening[J]. Mechanics Research Communications,2009,36(5): 556-562.
    [33]
    CHAABA A. Plastic collapse in presence of non-linear kinematic hardening by the bipotential and the sequential limit analysis approaches[J]. Mechanics Research Communications,2010,37(5): 484-488.
    [34]
    周洋靖, 冯志强, 宁坡. 双势理论用于处理非关联材料本构[J]. 应用数学和力学, 2015,36(8): 787-804.(ZHOU Yangjing, FENG Zhiqiang, NING Po. The bi-potential theory applied to non-associated constitutive law[J]. Applied Mathematics and Mechanics,2015,36(8): 787-804.(in Chinese))
    [35]
    CHENG Long, JIA Yun, OUESLATI A, et al. Plastic limit state of the hollow sphere model with non-associated Drucker-Prager material under isotropic loading[J]. Computational Materials Science,2012,62: 210-215.
    [36]
    CHENG Long, DE SAXC G, KONDO D. A stress-based variational model for ductile porous materials[J]. International Journal of Plasticity,2014,55: 133-151.
    [37]
    CHENG Long, JIA Yun, OUESLATI A, et al. A bipotential-based limit analysis and homogenization of ductile porous materials with non-associated Drucker-Prager matrix[J]. Journal of the Mechanics and Physics of Solids,2015,77: 1-26.
    [38]
    HJIAJ M, DAO D L, DE SAXC G. A family of bi-potentials describing the non-associated flow rule of pressure-dependent plastic models[J]. Acta Mechanica,2011,220(1/4): 237-246.
    [39]
    FENCHEL W. On conjugate convex functions[J]. Canadian Journal of Mathematics,1949,1: 73-77.
    [40]
    DRUCKER D C, PRAGER W. Soil mechanics and plasticity analysis or limit design[J].Quarterly Applied Mathematics,1953,10(2): 157-165.
    [41]
    刘金龙, 栾茂田, 许成顺, 等. Drucker-Prager准则参数特性分析[J]. 岩石力学与工程学报, 2006,25(S2): 4009-4015. (LIU Jinlong, LUAN Maotian, XU Chengshun, et al. Study on parametric characters of Drucker-Prager criterion[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(S2): 4009-4015. (in Chinese))
    [42]
    楚锡华, 徐远杰, 孔科. M-C与D-P屈服准则计算参数的能量等效方法及误差分析[J]. 岩石力学与工程学报, 2009,28(8): 1666-1673.(CHU Xihua, XU Yuanjie, KONG Ke. Energy equivalent method for calculating parameters of M-C and D-P criteria and error[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(8): 1666-1673.(in Chinese))
    [43]
    王光钦. 弹性力学[M]. 北京: 中国铁道出版社, 2008.(WANG Guangqin. Elastic Mechanics [M]. Beijing: China Railway Press, 2008.(in Chinese))
    [44]
    贺永年, 韩立军, 王衍森. 岩石力学简明教程[M]. 徐州: 中国矿业大学出版社, 2010. (HE Yongnian, HAN Lijun, WANG Yansen. Rock Mechanics Introductory Tutorial [M]. Xuzhou: China Mining University Press, 2010. (in Chinese))
    [45]
    BERGA A. Mathematical and numerical modeling of the non-associated plasticity of soils—part 2: finite element analysis[J]. International Journal of Non-Linear Mechanics,2012,47(1): 36-45.
    [46]
    殷有泉, 邸元. 地质材料弹塑性本构关系的塑性势理论[J]. 北京大学学报(自然科学版), 2014,50(2): 201-206.(YIN Youquan, DI Yuan. On the plastic potential theory of elasto-plastic constitutive relation for geomaterials[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2014,50(2): 201-206.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1158) PDF downloads(1539) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return