PANG Mingjun, NIU Ruipeng, LU Minjie. Wall Effects on Floating Characteristics of Bubbles in Shear-Thinning Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194
Citation: PANG Mingjun, NIU Ruipeng, LU Minjie. Wall Effects on Floating Characteristics of Bubbles in Shear-Thinning Fluids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 143-155. doi: 10.21656/1000-0887.400194

Wall Effects on Floating Characteristics of Bubbles in Shear-Thinning Fluids

doi: 10.21656/1000-0887.400194
Funds:  The National Natural Science Foundation of China(51376026)
  • Received Date: 2019-06-19
  • Rev Recd Date: 2019-08-04
  • Publish Date: 2020-02-01
  • The wall effects on the floating motion of bubbles in shear-thinning fluids were investigated with the numerical method. The interface between the bubble and the liquid phase was tracked with the volume of fluid (VOF) method. The Carreau model and the continuous surface tension model were used to calculate the rheological properties of the shear-thinning fluid and to compute the surface tension between gas and liquid phases, respectively. For different rheological indexes, the wall effects on the bubble shape, the liquid-phase flow field and the bubble terminal velocity were studied in detail. The results show that, the strong wall effect or the weak shear-shining effect can hinder the bubble deformation and the formation of wake vortices, and can reduce the bubble terminal velocity. Among all physical parameters, the bubble terminal velocity is most liable to the wall effect. For the strong wall effect and the strong shear-shining effect, the high-shear-rate region will occur near the wall, which results in a significant decrease in the apparent viscosity of the liquid phase near the wall.
  • loading
  • [1]
    UNO S, KINTNER R C. Effect of wall proximity on the rate of rise of single air bubbles in a quiescent liquid[J]. AICHE Journal,1956,2(3): 420-425.
    [2]
    KRISHNA R, URSEANU M I, VAN BATEN J M,et al. Wall effects on the rise of single gas bubbles in liquids[J]. International Communications in Heat and Mass Transfer,1999,26(6): 781-790.
    [3]
    TSUGE H, HAMAMOTO S, HIBINO S. Wall effect on the behavior of single bubbles rising in highly viscous-liquids[J]. Journal of Chemical Engineering of Japan,1984,17(6): 619-623.
    [4]
    MUKUNDAKRISHNAN K, QUAN S P, ECKMANN D M, et al. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder[J]. Physical Review E,2007,76(3): 036308. DOI: 10.1103/PhysRevE.76.036308.
    [5]
    ALHENDAL Y, TURAN A, KALENDAR A. Wall effects on the thermocapillary migration of single gas bubbles in stagnant liquids[J]. Heat and Mass Transfer,2017,〖STHZ〗 53(4): 1315-1326.
    [6]
    LEE J, PARK H. Wake structures behind an oscillating bubble rising close to a vertical wall[J]. International Journal of Multiphase Flow,2017,91: 225-242.
    [7]
    易妍妍, 王智慧, 杨超, 等. 静止非牛顿流体中气泡生成过程的传质[J]. 化工学报, 2015,66(11): 4335-4341.(YI Yanyan, WANG Zhihui, YANG Chao, et al. Mass transfer during single bubble growing in static non-Newtonian fluid[J]. CIESC Journal,2015,66(11): 4335-4341.(in Chinese))
    [8]
    OHTA M, KOBAYASHI N, SHIGEKANE Y, et al. The dynamic motion of single bubbles with unique shapes rising freely in hydrophobically modified alkali-soluble emulsion polymer solutions[J]. Journal of Rheology,2015,59(2): 303-316.
    [9]
    MIYAHARA T, YAMANAKA S. Mechanics of motion and deformation of a single bubble rising through quiescent highly viscous Newtonian and non-Newtonian media[J]. Journal of Chemical Engineering of Japan,1993,26(3): 297-302.
    [10]
    PREMLATA A R, TRIPATHI M K, KARRI B, et al. Dynamics of an air bubble rising in a non-Newtonian liquid in the axisymmetric regime[J]. Journal of Non-Newtonian Fluid Mechanics,2017,239: 53-61.
    [11]
    PORYLES R, VIDAL V. Rising bubble instabilities and fragmentation in a confined polymer solution[J]. Journal of Non-Newtonian Fluid Mechanics,2017,241: 26-33.
    [12]
    XU X F, ZHANG J, LIU F X, et al. Rising behavior of single bubble in infinite stagnant non-Newtonian liquids[J]. International Journal of Multiphase Flow,2017,95: 84-90.
    [13]
    KISHORE N, NALAJALA V S, CHHABRA R P. Effects of contamination and shear-thinning fluid viscosity on drag behavior of spherical bubbles[J]. Industrial & Engineering Chemical Research,2013,52(17): 6049-6056.
    [14]
    黄萌. 电场作用下油水乳液中水滴的运动和形变特性研究[D]. 博士学位论文. 西安: 西安交通大学, 2015.(HUANG Meng. Investigation on motion and deformation of water drops in oil-water emulsion under electrostatic field[D]. PhD Thesis. Xi’an: Xi’an Jiaotong University, 2015.(in Chinese))
    [15]
    BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2): 335-354.
    [16]
    DEKEE D, CARREAU P J. Friction factors and bubble dynamics in polymer solutions[J]. The Canadian Journal of Chemical Engineering,1993,71(2): 183-188.
    [17]
    DIMAKOPOULOS Y, PAVLIDIS M, TSAMOPOULOS J. Steady bubble rise in Herschel-Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model[J]. Journal of Non-Newtonian Fluid Mechanics,2013,200: 34-51.
    [18]
    BHAGA D, WEBER M E. Bubbles in viscous liquids: shapes, wakes and velocities[J]. Journal of Fluid Mechanics,1981,105: 61-85.
    [19]
    KUMAR P, VANKA S P. Effects of confinement on bubble dynamics in a square duct[J]. International Journal of Multiphase Flow,2015,〖STHZ〗 77: 32-47.
    [20]
    徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019,40(1): 20-35.(XU Chengjun, XU Shengli, LIU Qingyuan. Modified particle approximation to pressure gradients in the SPH algorithm for interfacial flows with high density rations[J]. Applied Mathematics and Mechanics,2019,40(1): 20-35.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1399) PDF downloads(387) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return