XIE Yiding, WANG Zhengping, LIU Shuai. Networked Non-Clustering Phase Synchronization in Coupled Neuron Systems[J]. Applied Mathematics and Mechanics, 2020, 41(6): 627-635. doi: 10.21656/1000-0887.400297
Citation: XIE Yiding, WANG Zhengping, LIU Shuai. Networked Non-Clustering Phase Synchronization in Coupled Neuron Systems[J]. Applied Mathematics and Mechanics, 2020, 41(6): 627-635. doi: 10.21656/1000-0887.400297

Networked Non-Clustering Phase Synchronization in Coupled Neuron Systems

doi: 10.21656/1000-0887.400297
Funds:  The National Natural Science Foundation of China(11605142;11871386)
  • Received Date: 2019-10-10
  • Rev Recd Date: 2019-11-26
  • Publish Date: 2020-06-01
  • The phase synchronization of coupled neurons under different complex network environments (including classical small-world, scale-free and random networks) was studied. Differing from the clustering phase synchronization in coupled phase oscillators generally found and reported in previous literature, a novel non-clustering phase synchronization was uncovered. The global synchronization involves 2 different dynamical processes: the frequency increase and the frequency decrease, where the frequency increase is induced by the spike insertion, and the frequency decrease is induced by the spike merge. Therefore, the neuron’s frequency variation mainly depends on the change of spike numbers, and the usual phase clustering phenomenon cannot be found here. The findings could enrich the understanding of networked dynamical behaviors including the phase synchronization and the computational neuron dynamics.
  • loading
  • [1]
    ARENAS A, DAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports,2008,469(3): 93-153.
    [2]
    TANG Y, QIAN F, GAO H, et al. Synchronization in complex networks and its application: a survey of recent advances and challenges[J]. Annual Reviews in Control,2014,38(2): 184-198.
    [3]
    PECORA L M, CARROLL T L, JOHNSON G A, et al. Fundamentals of synchronization in chaotic systems, concepts, and applications[J]. Chaos,1997, 7(4): 520-543.
    [4]
    ROSENBLUM M G, PIKOVSKY A S, KURTHS J. Phase synchronization of chaotic oscillators[J]. Physical Review Letters,1996,76(11): 1804-1807.
    [5]
    ZHENG Z G, HU G, HU B B. Phase slips and phase synchronization of coupled oscillators[J]. Physical Review Letters,1998,81(24): 5318-5321.
    [6]
    郑志刚, 胡岗, 周昌松, 等. 耦合混沌系统的相同步: 从高维混沌到低维混沌[J]. 物理学报, 2000,49(12): 2320-2327.(ZHENG Zhigang, HU Gang, ZHOU Changsong, et al. Phase synchronization in coupled chaotic systems: transitions from high-to low-dimensional chaos[J]. Acta Physica Sinica,2000,49(12): 2320-2327.(in Chinese))
    [7]
    ZHAN M, ZHENG Z G, HU G, et al. Nonlocal chaotic phase synchronization[J]. Physical Review E,2000,62(3): 3552-3557.
    [8]
    GOMEZ-GARDENES J, MORENO Y, ARENAS A. Paths to synchronization on complex networks[J]. Physical Review Letters,2007,98(3): 034101. DOI: 10.1103/PhysRevLett.98.034101.
    [9]
    CHIANG W Y, LAI P Y, CHAN C K. Frequency enhancement in coupled noisy excitable elements[J]. Physical Review Letters,2011,106(25): 254102. DOI: 10.1103/PhysRevLett.106.254102.
    [10]
    LIU S, ZHAN M. Clustering versus non-clustering phases synchronizations[J]. Chaos,2014,24(1): 013104. DOI: 10.1063/1.4861685.
    [11]
    LIU S, HE Z W, ZHAN M. Firing rates of coupled noisy excitable elements[J]. Frontiers of Physics,2014,9(1): 120-127.
    [12]
    张玮玮, 陈定元, 吴然超, 等. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018,39(2): 239-248.(ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, et al. Modified-projective-synchronization of memristor-based fractional-order delayed neural networks[J]. Applied Mathematics and Mechanics,2018,39(2): 239-248.(in Chinese))
    [13]
    李天择, 郭明, 陈向勇, 等. 基于多切换传输的复变量混沌系统的有限时组合同步控制[J]. 应用数学和力学, 2019,40(11): 1299-1308.(LI Tianze, GUO Ming, CHEN Xiangyong, et al. Finite-time combination synchronization control of complex-variable chaotic systems with multi-switching transmission[J]. Applied Mathematics and Mechanics,2019,40(11): 1299-1308.(in Chinese))
    [14]
    HUANG Z, ZHAN M, LI F, et al. Single-clustering synchronization in a ring of Kuramoto oscillators[J]. Journal of Physics A: Mathematical and Theoretical,2014,47(12): 125101. DOI: 10.1088/1751-8113/47/12/125101.
    [15]
    WATTS D J ,STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature,1998,393(6684): 440-442.
    [16]
    BARABASI A L, ALBERT R. Emergence of scaling in random networks[J]. Science,1999,286(5439): 509-512.
    [17]
    STROGATZ S H. Exploring complex networks[J]. Nature,2001,410(6825): 268-276.
    [18]
    HONEYCUTT R L. Stochastic Runge-Kutta algorithms, Ⅰ: white noise[J]. Physical Review A,1992,45(2): 600-603.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1138) PDF downloads(234) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return