WANG Xiaoe, LIN Xiaolin, LI Jianquan. State Feedback Control of Predator-Prey Systems With Holling Ⅳ Functional Responses[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1369-1380. doi: 10.21656/1000-0887.400314
Citation: WANG Xiaoe, LIN Xiaolin, LI Jianquan. State Feedback Control of Predator-Prey Systems With Holling Ⅳ Functional Responses[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1369-1380. doi: 10.21656/1000-0887.400314

State Feedback Control of Predator-Prey Systems With Holling Ⅳ Functional Responses

doi: 10.21656/1000-0887.400314
Funds:  The National Natural Science Foundation of China(11971281)
  • Received Date: 2019-10-05
  • Rev Recd Date: 2020-05-16
  • Publish Date: 2020-12-01
  • A class of predator-prey systems with Holling IV functional responses under state feedback control were studied. The sufficient conditions for the existence and stability of semi-trivial solutions and order-1 periodic solutions were obtained by means of the analogue of the Poincare criterion and the geometric theory for semi-continuous dynamical systems. The numerical simulation verifies the correctness of the conclusion and the effectiveness of the state feedback control, and reveals abundant dynamic behaviors of the state feedback control system, such as the fold bifurcation, the flip bifurcation and chaos.
  • loading
  • [1]
    马知恩. 种群生态学的数学建模与研究[M]. 合肥: 安徽教育出版社, 1996.(MA Zhien. Mathematical Modeling and Research of Population Ecology[M]. Hefei: Anhui Education Press, 1996.(in Chinese))
    [2]
    LIU X X, HUANG Q D. The dynamics of a harvested predator-prey system with Holling type Ⅳ functional response[J]. Biosystems,2018,169/170: 26-39.
    [3]
    LAJMIRI Z, KHOSHSIAR G R, ORAK I. Bifurcation and stability analysis of a ratio-dependent predator-prey model with predator harvesting rate[J]. Chaos, Solitons & Fractals,2018,106: 193-200.
    [4]
    SEN M, SRINIVASU P D N, BANERJEE M. Global dynamics of an additional food provided predator-prey system with constant harvest in predators[J]. Applied Mathematics and Computation,2015,250: 193-211.
    [5]
    LI S Y, XIONG Z L, WANG X. The study of a predator-prey system with group defense and impulsive control strategy[J]. Applied Mathematical Modelling,2010,34(9): 2546-2561.
    [6]
    TIAN Y, TANG S Y, CHEKEC R A. Dynamic complexity of a predator-prey model for IPM with nonlinear impulsive control incorporating a regulatory factor for predator releases[J]. Mathematical Modelling and Analysis,2019,24(1): 134-154.
    [7]
    焦建军, 陈兰荪, J·J·尼托, 等. 连续收获捕食者与脉冲存放食饵的阶段结构捕食-食饵模型的全局吸引和一致持久[J]. 应用数学和力学, 2008,29(5): 589-600.(JIAO Jianjun, CHEN Lansun, NIETO J J, et al. Permanence and global attractivity of a stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey[J]. Applied Mathematics and Mechanics,2008,29(5): 589-600.(in Chinese))
    [8]
    蒋贵荣, 刘期怀, 龙腾飞, 等. 脉冲动力系统的分岔混沌理论及其应用[M]. 北京: 科学出版社, 2015.(JIANG Guirong, LIU Qihuai, LONG Tengfei, et al. Bifurcation Chaos Theory of Impulsive Dynamic Systems and Application [M]. Beijing: Science Press, 2015.(in Chinese))
    [9]
    YANG J, TANG G Y, TANG S Y. Holling-Tanner predator-prey model with state-dependent feedback control[J]. Discrete Dynamics in Nature and Society,2018. DOI: 10.1155/2018/3467405.
    [10]
    HE Z M. Impulsive state feedback control of a predator-prey system with group defense[J]. Nonlinear Dynamics,2015,79(4): 2699-2714.
    [11]
    钱临宁, 陆启韶. 一类自治脉冲微分方程的动力学研究[J]. 动力学与控制学报, 2008,6(2): 97-101.(QIAN Linning, LU Qishao. Dynamics of a class of autonomous impulsive equations[J]. Journal of Dynamics and Control,2008,6(2): 97-101.(in Chinese))
    [12]
    白露, 刘琼, 陈武大仁. 一类捕食-食饵系统的状态依赖反馈控制模型[J]. 应用数学进展, 2018, 7(10): 1340-1348.(BAI Lu, LIU Qing, CHEN Wudaren. A predator-prey model with state-dependent feedback control[J]. Advances in Applied Mathematics,2018, 7(10): 1340-1348.(in Chinese))
    [13]
    LIANG Z Q, ZENG X P, PANG G P, et al. Periodic solution of a Leslie predator-prey system with ratio-dependent and state impulsive feedback control[J]. Nonlinear Dynamics,2017,89(4): 2941-2955.
    [14]
    ZHOU Z W, LIANG Z Q, ZENG X P, et al. Periodic solution of Holling-Tanner model with impulsive state feedback control[J]. Mathematica Applicata,2017,30(3): 576-588.
    [15]
    HUANG J C, XIAO D M. Analyses of bifurcations and stability in a predator-prey system with Holling type-Ⅳ functional response[J]. Acta Mathematicae Applicatae Sinica,2004, 20(1): 167-178.
    [16]
    陈兰荪. 害虫治理与半连续动力系统几何理论[J]. 北华大学学报(自然科学版), 2011,12(1): 1-9.(CHEN Lansun. Pest control and geometric theory of semi-continuous dynamical system[J]. Journal of Beihua University (Natural Science),2011,12(1): 1-9.(in Chinese))
    [17]
    张建树. 前沿与交叉科学-混沌生物学[M]. 西安: 陕西科学技术出版社, 1998.(ZHANG Jianshu. Frontiers and Crossover Science-Chaos Biology [M]. Xi’an: Shaanxi Science and Technology Press, 1998.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (920) PDF downloads(1072) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return