Citation: | PANG Naihong, LI Hong. Error Estimates of Mixed Space-Time Finite Element Solutions to Sobolev Equations[J]. Applied Mathematics and Mechanics, 2020, 41(8): 834-843. doi: 10.21656/1000-0887.410053 |
[1] |
陈凤欣, 陈焕贞. Sobolev方程的扩展特征混合有限元方法[J]. 高等学校计算数学学报, 2010,32(4): 291-302.(CHEN Fengxin, CHEN Huanzhen. The expanded characteristics-mixed finite element method for Sobolev equations[J]. Numerical Mathematics: a Journal of Chinese University,2010,32(4): 291-302.(in Chinese))
|
[2] |
刁群, 石东洋, 张芳. Sobolev方程一个新的H1-Galerkin混合有限元分析[J]. 高校应用数学学报, 2016,31(2): 215-224.(DIAO Qun, SHI Dongyang, ZHANG Fang. A new H1-Galerkin mixed finite element analysis for Sobolev equation[J]. Applied Mathematics: a Journal of Chinese Universities,2016, 31(2): 215-224.(in Chinese))
|
[3] |
ZHAO Z H, LI H, LUO Z D. Analysis of a space-time continuous Galerkin method for convection-dominated Sobolev equations[J]. Computers & Mathematics With Applications,2017,73(8): 1643-1656.
|
[4] |
JIN S J, LUO Z D. A reduced-order extrapolating collocation spectral method based on POD for the 2D Sobolev equations[J]. Boundary Value Problems,2019,63: 1-19.
|
[5] |
LUO Z D, TENG F, CHEN J. A POD-based reduced-order Crank-Nicolson finite volume element extrapolating algorithm for 2D Sobolev equations[J]. Mathematics and Computers in Simulation,2018,146: 118-133.
|
[6] |
罗振东, 张博. Sobolev方程基于POD的降阶外推差分算法[J]. 应用数学和力学, 2016,37(1): 107-116.(LUO Zhendong, ZHANG Bo. A reduced-order extrapolating finite difference algorithm based on the POD method for Sobolev equations[J]. Applied Mathematics and Mechanics,2016,37(1): 107-116.(in Chinese))
|
[7] |
LUO Z D, TENG F. A reduced-order extrapolated finite difference iterative scheme based on POD method for 2D Sobolev equation[J]. Applied Mathematics and Computation,2018,329: 374-383.
|
[8] |
LUO Z D, CHEN G. Proper Orthogonal Decomposition Methods for Partial Differential Equations [M]. San Diego: Academic Press of Elsevier, 2018.
|