XU Wentao, ZHANG Yanhui, TANG Guangwu, PAN Genji. Variable Damping Characteristics and a Dynamic Analysis Method for Magnesium Alloy[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1297-1310. doi: 10.21656/1000-0887.410144
Citation: XU Wentao, ZHANG Yanhui, TANG Guangwu, PAN Genji. Variable Damping Characteristics and a Dynamic Analysis Method for Magnesium Alloy[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1297-1310. doi: 10.21656/1000-0887.410144

Variable Damping Characteristics and a Dynamic Analysis Method for Magnesium Alloy

doi: 10.21656/1000-0887.410144
  • Received Date: 2020-05-19
  • Rev Recd Date: 2020-06-01
  • Publish Date: 2020-12-01
  • The damping characteristics of the GW63K magnesium alloy were studied by means of the dynamic thermomechanical analyzer (DMA) based on the viscoelastic damping theory. The magnitude, variation characteristics and dependence sensitivity of this magnesium alloy's damping were given from the angle of dynamic applications. For the first time the damping parameters of this type of magnesium alloy could be qualitatively described as variables in the dynamic analysis, and the damping change laws with the service environment temperature and excitation frequency were quantitatively given. For the nonlinear solution problem with variable damping in the dynamic system, the time-dependent manner of damping was established. Based on the pseudo excitation method, a quasi-non-stationary stochastic analysis method was built for stationary problems, and an efficient numerical analysis method for variable-damping problems of magnesium alloys under random vibration was proposed. Numerical and experimental verifications of the structural dynamic responses of magnesium alloy components were carried out respectively, to reveal the obvious difference between the analysis results based on constant damping and variable damping. The dynamic model based on variable damping gives results in better agreement with the experimental results. It is concluded that in the fields where high accuracy is required, the variable-damping model should be chosen to analyze the magnesium alloy material structure.
  • loading
  • [1]
    刘先兰, 伍杰, 张文玉. Nd对ZK60镁合金组织和阻尼性能的影响[J]. 特种铸造及有色合金, 2018, 38(7): 709-712.(LIU Xianlan, WU Jie, ZHANG Wenyu. Effect of Nd on microstructure and damping properties of ZK60 magnesium alloy[J]. Forging & Stamping Technology,2018,38(7): 709-712.(in Chinese))
    刘运峰, 刘楚明, 高永浩, 等. 应变量对锻造Mg-Gd-Y-Zn-Zr合金显微组织和力学性能的影响[J]. 锻压技术, 2019,44(4): 145-150, 161.(LIU Yunfeng, LIU Chuming, GAO Yonghao, et al. Influence of strain on microstructure and mechanical properties for forged Mg-Gd-Y-Zn-Zr alloy[J]. Forging & Stamping Technology,2019,44(4): 145-150, 161.(in Chinese))
    李浩, 肖阳, 关绍康, 等. 热处理对Al-Cu-Mg铸造铝合金组织和性能的影响[J]. 特种铸造及有色合金, 2014,34(7): 763-766.(LI Hao, XIAO Yang, GUAN Shaokang, et al. Effects of heat treatment on microstructure and mechanical properties of Al-Cu-Mn cast aluminum alloy[J]. Special Casting & Nonferrous Alloys,2014,34(7): 763-766.(in Chinese))
    NI Y, HUANG Y, TAN W. Research and verification on damping performance of magnesium alloy[J]. Advanced Materials Research,2013,668: 794-798.
    HIDETOSHI S, HIROYUKI W, TOSHIJ M. Damping properties in Mg-Zn-Y alloy with dispersion of quasicrystal phase particle[J]. Materials Letters,2011,65: 3251-3253.
    HIROYUKI W, MASAMI S, MASAO F, et al. Mechanical and damping properties of fullerene-dispersed AZ91 magnesium alloy composites processed by a powder metallurgy route[J]. Materials Transactions,2006,47(4): 999-1007.
    张军, 寇子明, 杨亚琴, 等. AZ31和ZK60变形镁合金阻尼性能的研究[J]. 兵器材料科学与工程, 2017,40(3): 115-118.(ZHANG Jun, KOU Ziming, YANG Yaqin, et al. Damping properties of AZ31 and ZK60 wrought magnesium alloys[J]. Ordnance Material Science and Engineering,2017,40(3): 115-118.(in Chinese))
    TIAN T, YUAN Z C, TAN W, et al. Effect of the dynamic evolution of dislocations under cyclic shear stress on damping capacity of AZ61 magnesium alloy[J]. Materials Science and Engineering: A,2018,710: 343-348.
    HU X S, ZHANG Y K, ZHENG M Y, et al. A study of damping capacities in pure Mg and Mg-Ni alloys[J]. Scripta Materialia,2005,52: 1141-1145.
    WANG J F, LU R P, QIN D Z, et al. A study of the ultrahigh damping capacities in Mg-Mn alloys[J]. Materials Science and Engineering: A,2013,560: 667-671.
    高希朋. Mg- x Zn-0.6Zr合金细晶板材的力学及阻尼性能研究[D]. 硕士学位论文. 长沙: 湖南大学, 2018.(GAO Xipeng. Research on mechanical properties and damping capacities of fine-grained Mg- x Zn-0.6Zr magnesium alloy sheets[D]. Master Thesis. Changsha: Hunan University, 2018.(in Chinese))
    NISHIYAMA K, MATSUI R, IKEDA Y, et al. Damping properties of a sintered Mg-Cu-Mn alloy[J]. Journal of Alloys and Compounds,2003, 335(1/2): 22-25.
    OH H, IZAWA K, SHI G, et al. Development of variable-damping isolator using bio-metal fiber for reaction wheel vibration isolation[J]. Smart Material and Structures,2005,14(5): 928-933.
    ANDRE S, LOTHAR G. On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems[J]. Mechanics Research Communications,2006,33: 99-107.
    LIU M, ZUO D L, JONES N P. Analytical and numerical study of deck-stay interaction in a cable stayed bridge in the context of field observations[J]. Journal of Engineering Mechanics,2013,139(11): 1636-1652.
    LIU Y Q, MATSUHISA H, UTSUNO H. Semi-active vibration isolation system with variable stiffness and damping control[J]. Journal of Sound and Vibration,2008,313(1/2): 16-28.
    林家浩, 张亚辉, 赵岩. 虚拟激励法在国内外工程界的应用回顾与展望[J]. 应用数学和力学, 2017,38(1): 1-32.(LIN Jiahao, ZHANG Yahui, ZHAO Yan. The pseudo excitation method and its industrial applications in China and abroad[J]. Applied Mathematics and Mechanics,2017,38(1): 1-32.(in Chinese))
    XU W T, ZHANG Y H, LIN J H, et al. Sensitivity analysis and optimization of vehicle-bridge systems based on combined PEM-PIM strategy[J]. Computers and Structures,2011,89(3/4): 339-345.
    GRANATO A, LUCKE K. Theory of mechanical damping due to dislocations[J]. Journal of Applied Physics,1956,27(6): 583-593.
    LEVINSON D W, MC PHERSON D J. Phase relations in magnesium-lithium-aluminum alloys[J]. Trans ASM,1956,48: 689.
    CLARENCE M Z, CYRIL S S, CHARLES S B, et al. Elasticity and Anelasticity of Metals [M]. Chicago: University of Chicago Press, 1948.
    国家质量技术监督局. 阻尼材料 阻尼性能测试方法: GB/T 18258—2000[S]. 2000.(The State Bureau of Quality and Technical Supervision. Damping materials-testing method for damping properties: GB/T 18258—2000[S]. 2000.(in Chinese))
    郑毅. 结构比例阻尼和复模态振型复杂度的参数研究[D]. 硕士学位论文. 大连: 大连理工大学, 2018.(ZHENG Yi. Study on structural proportional damping and parameter of modes shape complexity[D]. Master Thesis. Dalian: Dalian University of Technology, 2018.(in Chinese))
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (837) PDF downloads(705) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint