Volume 42 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LI Xinye, WANG Yaxue, ZHANG Huabiao, ZHANG Lijuan, YU Tao. Effects of Structure Parameters on Dynamic Performances of Electrostatic Drive Micro-Machined Gyroscopes[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1248-1257. doi: 10.21656/1000-0887.410316
Citation: LI Xinye, WANG Yaxue, ZHANG Huabiao, ZHANG Lijuan, YU Tao. Effects of Structure Parameters on Dynamic Performances of Electrostatic Drive Micro-Machined Gyroscopes[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1248-1257. doi: 10.21656/1000-0887.410316

Effects of Structure Parameters on Dynamic Performances of Electrostatic Drive Micro-Machined Gyroscopes

doi: 10.21656/1000-0887.410316
  • Received Date: 2020-10-19
  • Accepted Date: 2021-03-31
  • Rev Recd Date: 2021-01-27
  • Publish Date: 2021-12-01
  • In view of the cubic nonlinear stiffness and the nonlinear electrostatic force in fraction form, a 2DOF model was analyzed with the harmonic balance method and the residue theorem, and the effects of structure parameters on dynamic performances of micro-machined gyroscopes were studied. The variations of the capacitance with the driving force frequency and the carrier angular velocity were obtained for different thicknesses and gaps of driving electrode comb teeth, different electrode plate areas and different detecting electrode gaps. In addition, the variations of sensitivity and nonlinearity with these structure parameters were also presented. It is found that, the variation curves of the detection capacitance with the driving force frequency show obvious nonlinear characteristics. In other words, the 2nd peak leans rightward, which results in jumping. The effects of thicknesses and gaps of driving electrode comb teeth, and gaps between detecting electrode plates on the variation curves of the capacitance with the carrier angular velocity are much greater than those of detecting electrode plate areas. The variations of sensitivity and nonlinearity with thicknesses and gaps of driving electrode comb teeth and detecting electrode plate areas, are approximately linear, however, those with gaps between detecting electrode plates are nonlinear.

  • loading
  • [1]
    GUO Z S, CHENG F C, LI B Y, et al. Research development of silicon MEMS gyroscopes: a review[J]. Microsystem Technologies, 2015, 21(10): 2053-2066. doi: 10.1007/s00542-015-2645-x
    [2]
    杨波, 吴磊, 周浩, 等. 双质量解耦硅微陀螺仪的非理想解耦特性研究和性能测试[J]. 中国惯性技术学报, 2015, 23(6): 794-799. (YANG Bo, WU Lei, ZHOU Hao, et al. Non-ideal decoupled characteristics’ research and system performance test of dual-mass decoupled silicon micro-gyroscope[J]. Journal of Chinese Inertial Technology, 2015, 23(6): 794-799.(in Chinese)
    [3]
    ASOKANTHAN S F, WANG T. Nonlinear instabilities in a vibratory gyroscope subjected to angular speed fluctuations[J]. Nonlinear Dynamics, 2008, 54(1/2): 69-78. doi: 10.1007/s11071-008-9347-1
    [4]
    BRAGHIN F, RESTA F, LEO E, et al. Nonlinear dynamics of vibrating MEMS[J]. Sensors and Actuators A: Physical, 2007, 134(1): 98-108. doi: 10.1016/j.sna.2006.10.041
    [5]
    MARTYNENKO Y G, MERKURIEV I V, PODALKOV V V. Dynamics of a ring micromechanical gyroscope in the forced-oscillation mode[J]. Gyroscopy and Navigation, 2010, 1(1): 43-51. doi: 10.1134/S2075108710010074
    [6]
    MOJAHEDI M, AHMADIAN M T, FIROOZBAKHSH K. The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces[J]. Acta Mechanica Sinica, 2013, 29(6): 851-863. doi: 10.1007/s10409-013-0083-5
    [7]
    KACEM N, HENTZ S, BAGUET S, et al. Forced large amplitude periodic vibrations of non-linear Mathieu resonators for microgyroscope applications[J]. International Journal of Non-Linear Mechanics, 2011, 46(10): 1347-1355. doi: 10.1016/j.ijnonlinmec.2011.07.008
    [8]
    LAJIMI S A M, HEPPLER G R, ABDEL-RAHMAN E M. Primary resonance of an amplitude-frequency-modulation beam-rigid body microgyroscope[J]. International Journal of Non-Linear Mechanics, 2015, 77: 364-375. doi: 10.1016/j.ijnonlinmec.2015.07.002
    [9]
    尚慧琳, 张涛, 文永蓬. 参数激励驱动微陀螺系统的非线性振动特性研究[J]. 振动与冲击, 2017, 36(1): 102-107. (SHANG Huilin, ZHANG Tao, WEN Yongpeng. Nonlinear vibration behaviors of a micro-gyroscope system actuated by a parametric excitation[J]. Journal of Vibration and Shock, 2017, 36(1): 102-107.(in Chinese)
    [10]
    文永蓬, 尚慧琳. 微陀螺动力学建模与非线性分析[J]. 振动与冲击, 2015, 34(4): 69-73. (WEN Yongpeng, SHANG Huilin. Dynamic modeling and nonlinear analysis for a microgyroscope[J]. Journal of Vibration and Shock, 2015, 34(4): 69-73.(in Chinese)
    [11]
    郝淑英, 李会杰, 张辰卿, 等. 检测刚度非线性对双检测微陀螺灵敏度稳定性影响[J]. 振动与冲击, 2018, 37(24): 46-52. (HAO Shuying, LI Huijie, ZHANG Chenqing, et al. Influence of sense stiffness nonlinearity on the sensitivity stability of a double-sense micro-gyroscope[J]. Journal of Vibration and Shock, 2018, 37(24): 46-52.(in Chinese)
    [12]
    郝淑英, 李伟雄, 李会杰, 等. 驱动刚度非线性对双检测微陀螺性能的影响[J]. 振动与冲击, 2019, 38(14): 131-137. (HAO Shuying, LI Weixiong, LI Huijie, et al. Effect of driving stiffness nonlinearity on the performance of a double sense-mode micro gyroscope[J]. Journal of Vibration and Shock, 2019, 38(14): 131-137.(in Chinese)
    [13]
    HAMED Y S, EL-SAYED A T, EL-ZAHAR E R. On controlling the vibrations and energy transfer in MEMS gyroscope system with simultaneous resonance[J]. Nonlinear Dynamics, 2016, 83(3): 1687-1704. doi: 10.1007/s11071-015-2440-3
    [14]
    AWREJCEWICZ J, STAROSTA R, SYPNIEWSKA-KAMIŃSKA G. Complexity of resonances exhibited by a nonlinear micromechanical gyroscope: an analytical study[J]. Nonlinear Dynamics, 2019, 97(3): 1819-1836. doi: 10.1007/s11071-018-4530-5
    [15]
    TSAI N C, SUE C Y. Stability and resonance of micro-machined gyroscope under nonlinearity effects[J]. Nonlinear Dynamics, 2009, 56(4): 369-379. doi: 10.1007/s11071-008-9404-9
    [16]
    NITZAN S H, TAHERI-TEHRANI P, DEFOORT M, et al. Countering the effects of nonlinearity in rate-integrating gyroscopes[J]. IEEE Sensors Journal, 2016, 16(10): 3556-3563. doi: 10.1109/JSEN.2016.2533480
    [17]
    LESTEV M A, TIKHONOV A A. Nonlinear phenomena in the dynamics of micromechanical gyroscopes[J]. Vestnik St Petersburg University: Mathematics, 2009, 42(1): 53-57. doi: 10.3103/S1063454109010087
    [18]
    LEE K B. Principles of Micro Electromechanical System[M]. Hoboken, NJ, USA: John Wiley & Sons International Rights, 2011.
    [19]
    钟玉泉. 复变函数论[M]. 北京: 高等教育出版社, 2013.

    ZHONG Yuquan. Complex Variable Theory[M]. Beijing: Higher Education Press, 2013. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)

    Article Metrics

    Article views (127) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return