Volume 43 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
SHI Jincheng. Spatial Decay Estimates for a Class of Thermoelastic Plates[J]. Applied Mathematics and Mechanics, 2022, 43(1): 115-122. doi: 10.21656/1000-0887.420005
Citation: SHI Jincheng. Spatial Decay Estimates for a Class of Thermoelastic Plates[J]. Applied Mathematics and Mechanics, 2022, 43(1): 115-122. doi: 10.21656/1000-0887.420005

Spatial Decay Estimates for a Class of Thermoelastic Plates

doi: 10.21656/1000-0887.420005
  • Received Date: 2021-01-07
  • Rev Recd Date: 2021-03-03
  • Available Online: 2021-11-15
  • Publish Date: 2022-01-01
  • The spatial properties of solutions for a class of thermoelastic plates with biharmonic operators were studied in a semi-infinite strip in R2. Firstly, an energy expression was constructed. Then, by means of the differential inequality technique, a differential inequality whose energy expression can be controlled with its 1st derivative was derived. Finally, the spatial decay estimates of the solution were obtained. The result can be regarded as an application of the Saint-Venant principle to hyperbolic parabolic coupled biharmonic equations.

  • loading
  • [1]
    BOLEY B A. The determination of temperature, stresses, and deflections in two-dimensional thermoelastic problems[J]. Journal of the Aeronautical Sciences, 1956, 23(1): 67-75. doi: 10.2514/8.3503
    [2]
    HORGAN C O. Recent developments concerning Saint-Venant’s principle: an update[J]. Applied Mechanics Reviews, 1989, 42(11): 295-302. doi: 10.1115/1.3152414
    [3]
    KNOWLES J K. An energy estimate for the biharmonic equation and its application to Saint-Venant’s principle in plane elastostatics[J]. Indian Journal of Pure and Applied Mathematics, 1983, 14(7): 791-805.
    [4]
    PAYNE L E, SCHAEFER P W. Some Phragmén-Lindelöf type results for the biharmonic equation[J]. Zeitschrift für Angewandte Mathematik und Physik, 1994, 45(3): 414-432. doi: 10.1007/BF00945929
    [5]
    LIN C H. Spatial decay estimates and energy bounds for the Stokes flow equation[J]. Stability and Applied Analysis of Continuous Media, 1992, 2: 249-264.
    [6]
    FLAVIN J N. On Knowles’ version of Saint-Venant’s principle in two-dimensional elastostatics[J]. Archive for Rational Mechanics and Analysis, 1973, 53: 366-375.
    [7]
    HORGAN C O. Decay estimates for the biharmonic equation with applications to Saint-Venant’s principles in plane elasticity and Stokes flows[J]. Quarterly of Applied Mathematics, 1989, 47(1): 147-157. doi: 10.1090/qam/987903
    [8]
    LIU Y, LIN C H. Phragmén-Lindelöf type alternative results for the Stokes flow equation[J]. Mathematical Inequalities & Applications, 2006, 9(4): 671-694.
    [9]
    LI Y F, LIN C H. Spatial decay for solutions to 2-D Boussinesq system with variable thermal diffusivity[J]. Acta Applicandae Mathematica, 2018, 154: 111-130. doi: 10.1007/s10440-017-0136-z
    [10]
    李远飞, 石金诚, 曾鹏. 三维柱体上调和方程的二则一结果[J]. 海南大学学报自然科学版, 2020, 38(1): 6-12. (LI Yuanfei, SHI Jincheng, ZENG Peng. Phragmén-Lindelöf alternative type results for harmonic equation in a 3D cylinder[J]. Natural Science Journal of Hainan University, 2020, 38(1): 6-12.(in Chinese)
    [11]
    李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题[J]. 应用数学和力学, 2020, 41(4): 406-419. (LI Yuanfei. Phragmén-Lindelöf type results for non-standard Stokes flow equations around semi-infinite cylinder[J]. Applied Mathematics and Mechanics, 2020, 41(4): 406-419.(in Chinese)
    [12]
    李远飞, 曾鹏. 具有非线性边界条件的调和方程在无界区域上的Phragmén-Lindelöf二择性结果[J]. 河南大学学报(自然科学版), 2020, 50(3): 365-372. (LI Yuanfei, ZENG Peng. Phragmén-Lindelöf alternative type results for the harmonic equation with nonlinear boundary conditions in an unbounded region[J]. Journal of Henan University (Natural Science), 2020, 50(3): 365-372.(in Chinese)
    [13]
    李远飞, 张旖. 一些热传导理论中的伪抛物方程的Phragmén-Lindelöf二择性结果[J]. 数学的实践与认识, 2020, 50(12): 220-232. (LI Yuanfei, ZHANG Yi. Phragmén-Lindelöf alternative type results for the pseudo-parabolic equation in some theories of heat conduction[J]. Mathematics in Practice and Theory, 2020, 50(12): 220-232.(in Chinese)
    [14]
    李远飞, 肖胜中, 郭连红, 等. 一类二阶拟线性瞬态方程组的Phragmén-Lindelöf型二择性结果[J]. 吉林大学学报(理学版), 2020, 58(5): 1047-1054. (LI Yuanfei, XIAO Shengzhong, GUO Lianhong, et al. Phragmén-Lindelöf type alternative results for a class of second order quasilinear transient equations[J]. Journal of Jilin University(Science Edition), 2020, 58(5): 1047-1054.(in Chinese)
    [15]
    李远飞, 李志青. 具有非线性边界条件的瞬态热传导方程的二择一结果[J]. 数学物理学报, 2020, 40A(5): 1248-1258. (LI Yuanfei, LI Ziqing. Phragmén-Lindelöf type results for transient heat conduction equation with nonlinear boundary conditions[J]. Acta Mathematica Scientia, 2020, 40A(5): 1248-1258.(in Chinese) doi: 10.3969/j.issn.1003-3998.2020.05.012
    [16]
    LIU Y, CHEN W H. Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications[J]. Zeitschrift für Angewandte Mathematik und Physik, 2020, 71(3): 15-55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (809) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return