Volume 43 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Jincheng WANG, Hui GUAN, Zhijun WEI, Chuijie WU. 壁面结构对三维可压缩气泡群影响的数值模拟研究[J]. Applied Mathematics and Mechanics, 2022, 43(1): 49-62. doi: 10.21656/1000-0887.420041
Citation: Jincheng WANG, Hui GUAN, Zhijun WEI, Chuijie WU. 壁面结构对三维可压缩气泡群影响的数值模拟研究[J]. Applied Mathematics and Mechanics, 2022, 43(1): 49-62. doi: 10.21656/1000-0887.420041

壁面结构对三维可压缩气泡群影响的数值模拟研究

doi: 10.21656/1000-0887.420041
  • Received Date: 2021-02-20
  • Rev Recd Date: 2021-05-09
  • Publish Date: 2022-01-01
  • 基于流体体积(VOF)法追踪自由液面,研究了壁面结构对三维可压缩气泡群流动的影响。通过在待测壁面上设置不同形状的壁面结构(长方体、椭球体和圆锥体)并改变它们各自的几何参数(位置和长度),来研究壁面结构对壁面附近的气泡群流动的影响,该影响表现为气泡群对壁面的空间平均压力。研究发现,壁面结构对气泡群的拓扑结构的影响会造成壁面压力的变化,其中长方体壁面结构降低壁面平均压力的效果最好,且通过适当调整该结构的位置和长度,能使壁面的压力脉动现象消失。

  • loading
  • [1]
    CAPART H, YOUNG D L. Formation of a jump by the dam-break wave over a granular bed[J]. Journal of Fluid Mechanics, 1998, 372: 165-187. doi: 10.1017/S0022112098002250
    [2]
    PRITCHARD D, HOGG A J. On sediment transport under dam-break flow[J]. Journal of Fluid Mechanics, 2002, 473: 265-274. doi: 10.1017/S0022112002002550
    [3]
    LOBOVSKÝ L, BOTIA-VERA E, CASTELLANA F, et al. Experimental investigation of dynamic pressure loads during dam break[J]. Journal of Fluids & Structures, 2014, 48: 407-434.
    [4]
    MARTIN J C, MOYCE W J. Part Ⅳ: an experimental study of the collapse of liquid columns on a rigid horizontal plane philosophical[J]. Transactions of the Royal Society of London(Series A): Mathematical and Physical Sciences, 1952, 244: 312-324.
    [5]
    KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123: 421-434. doi: 10.13182/NSE96-A24205
    [6]
    CRUCHAGA M A, CELENTANO D J, TEZDUYAR T E. Collapse of a liquid column: numerical simulation and experimental validation[J]. Computational Mechanics, 2007, 39: 453-476. doi: 10.1007/s00466-006-0043-z
    [7]
    HU C, SUEYOSHI M. Numerical simulation and experiment on dam break problem[J]. Journal of Marine Science and Application, 2010, 9: 109-114. doi: 10.1007/s11804-010-9075-z
    [8]
    COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191: 448-475. doi: 10.1016/S0021-9991(03)00324-3
    [9]
    MA Z H, CAUSON D M, QIAN L, et al. A compressible multiphase flow model for violent aerated wave impact problems[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 2014, 470: 1-25.
    [10]
    SHIN S. Simulation of compressibility of entrapped air in an incompressible free surface flow using a pressure-based method for unified equations[J]. International Journal for Numerical Methods in Fluids, 2020, 92: 1274-1289. doi: 10.1002/fld.4827
    [11]
    JANÍK P, HYHLÍK T. Pressure evaluation during dam break using weakly compressible SPH[J]. The European Physical Journal Conferences, 2019, 213: 02030. doi: 10.1051/epjconf/201921302030
    [12]
    WANG L, JIANG Q, ZHANG C, et al. Improvements of MPS for reducing numerical pressure oscillation in the dam break simulation[J]. Advances in Water Science, 2018, 29(1): 89-99.
    [13]
    WANG X G, LUO C, GU Z B. Collapse simulation of a cavitation bubble near a rigid boundary[J]. Journal of Zhejiang University of Technology, 2015, 43(5): 512-516.
    [14]
    LI S, ZHANG A M, HAN R, et al. Experimental and numerical study on bubble-sphere interaction near a rigid wall[J]. Physics of Fluids, 2017, 29(9): 092102. doi: 10.1063/1.4993800
    [15]
    BEIG S A, ABOULHASANZADEH B, JOHNSEN E. Temperatures produced by inertially collapsing bubbles near rigid surfaces[J]. Journal of Fluid Mechanics, 2018, 852: 102-125.
    [16]
    OpenCFD Ltd. OpenFOAM, the Open Source CFD Toolbox, User’s Guide[M]. Free Software Foundation, Inc, 2016.
    [17]
    NOH W F, WOODWARD P. SLIC (simple line interface calculation)[C]//Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Enschede: Twente University, 1976: 330-340.
    [18]
    WELLER H G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow: TR/HGW/04[R]. Technical Report. OpenCFD Ltd, 2008.
    [19]
    FERZIGER J, PERIC M. Computational Methods for Fluid Dynamics[M]. Berlin: Springer, 2012.
    [20]
    ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65. doi: 10.1016/0021-9991(86)90099-9
    [21]
    JASAK H, WELLER H G. Interface tracking capabilities of the inter-gamma differencing scheme[R]. London: Imperial College, University of London, 1995.
    [22]
    GUAN H, WANG J C, WEI Z J, et al. Numerical analysis of the interaction of 3D compressible bubble clusters[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1181-1196. doi: 10.1007/s10483-019-2509-6
    [23]
    KRÖNINGER D A. Particle-tracking-velocimetry-messungen an kollabierenden kavitationsblasen[D]. PhD Thesis. Göttingen: Georg-August Universität, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(1)

    Article Metrics

    Article views (168) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return