Volume 42 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
LIANG Guanpo, FU Yuxin, LOU Benliang, XIE Yuxin. Buckling Behaviors of Elastomers With Periodic Elliptical Holes Under Negative Pressure Activation[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1221-1228. doi: 10.21656/1000-0887.420100
Citation: LIANG Guanpo, FU Yuxin, LOU Benliang, XIE Yuxin. Buckling Behaviors of Elastomers With Periodic Elliptical Holes Under Negative Pressure Activation[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1221-1228. doi: 10.21656/1000-0887.420100

Buckling Behaviors of Elastomers With Periodic Elliptical Holes Under Negative Pressure Activation

doi: 10.21656/1000-0887.420100
  • Received Date: 2021-04-16
  • Accepted Date: 2021-04-16
  • Rev Recd Date: 2021-05-10
  • Available Online: 2021-12-31
  • Publish Date: 2021-12-01
  • The buckling behaviors of 2D structures with periodic elliptical holes were studied through numerical simulations and theoretical analysis. A theoretical model was established for the modal analysis corresponding to different buckling modes. The analysis results indicate that, there is a transformation between the buckling modes of the 2D structure with elliptical holes, with the change of the geometrical parameters of the holes. The theoretical analysis and the numerical results match up. Furthermore, in the numerical simulation, a modified force boundary condition for a unit cell under negative pressure activation, being different from the displacement loading, should be considered to ensure the completeness conditions are fulfilled. The confusion in the application of appropriate boundary conditions for the unit cell will result in errors. The choice of the unit cell and the derivation of correct boundary conditions, combined with finite structures, were discussed.

  • loading
  • [1]
    LEE J H, SINGER J P, THOMAS E L. Micro-/nanostructured mechanical metamaterials[J]. Advanced Materials, 2012, 24(36): 4782-4810. doi: 10.1002/adma.201201644
    COULAIS C, TEOMY E, DE REUS K, et al. Combinatorial design of textured mechanical metamaterials[J]. Nature, 2016, 535(7613): 529-532. doi: 10.1038/nature18960
    陈启勇, 胡少伟, 张子明. 基于声子晶体理论的弹性地基梁的振动特性研究[J]. 应用数学和力学, 2014, 35(1): 29-38. (CHEN Qiyong, HU Shaowei, ZHANG Ziming. Research on the vibration property of the beam on elastic foundation based on the PCs theory[J]. Applied Mathematics and Mechanics, 2014, 35(1): 29-38.(in Chinese) doi: 10.3879/j.issn.1000-0887.2014.01.004
    PELRINE R, KORNBLUH R, PEI Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454): 836-839. doi: 10.1126/science.287.5454.836
    BROCHU P, PEI Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1): 10-36. doi: 10.1002/marc.200900425
    BERTOLDI K, BOYCE M C, DESCHANEL S, et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(8): 2642-2668. doi: 10.1016/j.jmps.2008.03.006
    WANG G, LI M, ZHOU J. Switching of deformation modes in soft mechanical metamaterials[J]. Soft Materials, 2016, 14(3): 180-186. doi: 10.1080/1539445X.2016.1178143
    MULLIN T, DESCHANEL S, BERTOLDI K, et al. Pattern transformation triggered by deformation[J]. Physical Review Letters, 2007, 99(8): 084301. doi: 10.1103/PhysRevLett.99.084301
    BERTOLDI K, REIS P M, WILLSHAW S, et al. Negative Poisson’s ratio behavior induced by an elastic instability[J]. Advanced Materials, 2010, 22(3): 361-366. doi: 10.1002/adma.200901956
    HU J, HE Y, LEI J, et al. Novel mechanical behavior of periodic structure with the pattern transformation[J]. Theoretical and Applied Mechanics Letters, 2013, 3(5): 054007. doi: 10.1063/2.1305407
    BERTOLDI K, BOYCE M C. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures[J]. Physical Review B, 2008, 77(5): 439-446.
    HU J, HE Y, LEI J, et al. Mechanical behavior of composite gel periodic structures with the pattern transformation[J]. Structural Engineering and Mechanics, 2014, 50(5): 605-616. doi: 10.12989/sem.2014.50.5.605
    LI J, SLESARENKO V, RUDYKH S. Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials[J]. Soft Matter, 2018, 14(30): 6171-6180. doi: 10.1039/C8SM00874D
    LI J, WANG Y T, CHEN W Q, et al. Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures[J]. Journal of Sound and Vibration, 2019, 459: 114848. doi: 10.1016/j.jsv.2019.114848
    CHEN K L, CAO Y P, ZHANG M G, et al. Indentation-triggered pattern transformation in hyperelastic soft cellular solids[J]. Comptes Rendus Mécanique, 2014, 342(5): 292-298.
    CHEN Y, SCARPA F, REMILLAT C, et al. Curved Kirigami SILICOMB cellular structures with zero Poisson’s ratio for large deformations and morphing[J]. Journal of Intelligent Material Systems and Structures, 2013, 25(6): 731-743.
    WANG P, SHIM J, BERTOLDI K. Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals[J]. Physical Review B, 2013, 88(1): 2466-2472.
    SHIM J, WANG P, BERTOLDI K. Harnessing instability-induced pattern transformation to design tunable phononic crystals[J]. International Journal of Solids and Structures, 2015, 58: 52-61. doi: 10.1016/j.ijsolstr.2014.12.018
    JOHNSON C G, JAIN U, HAZEL A L, et al. On the buckling of an elastic holey column[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2017, 473(2207): 20170477. doi: 10.1098/rspa.2017.0477
    CHEN Y C, JIN L H. Geometric role in designing pneumatically actuated pattern-transforming metamaterials[J]. Extreme Mechanics Letters, 2018, 23: 55-66. doi: 10.1016/j.eml.2018.08.001
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (217) PDF downloads(61) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint