Volume 43 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
ZHOU Jie, ZHAO Tingting, CHEN Qingqing, WANG Zhiyong, WANG Zhihua. Prediction of Concrete Meso-Model Stress-Strain Curves Based on GoogLeNet[J]. Applied Mathematics and Mechanics, 2022, 43(3): 290-299. doi: 10.21656/1000-0887.420136
Citation: ZHOU Jie, ZHAO Tingting, CHEN Qingqing, WANG Zhiyong, WANG Zhihua. Prediction of Concrete Meso-Model Stress-Strain Curves Based on GoogLeNet[J]. Applied Mathematics and Mechanics, 2022, 43(3): 290-299. doi: 10.21656/1000-0887.420136

Prediction of Concrete Meso-Model Stress-Strain Curves Based on GoogLeNet

doi: 10.21656/1000-0887.420136
  • Received Date: 2021-05-17
  • Rev Recd Date: 2021-06-28
  • Available Online: 2022-02-16
  • Publish Date: 2022-03-08
  • Generally, the macro-scopic mechanical properties of heterogeneous composites depend on meso-components’ distribution and mechanical properties, but it is extremely difficult to establish a clear macro-meso relationship expression. To cope with this challenge, for concrete, a strategy based on deep learning was proposed to obtain the stress-strain curves through meso-model image information. First, the GoogLeNet model based on convolutional neural networks was used for image information recognition and extraction. According to the complexity of the stress-strain curve, data preprocessing operations were performed and the corresponding multi-task loss function was designed. The meso-model images in the data set were generated with the random aggregate model based on the Monte Carlo method, and numerical simulation experiments were conducted to obtain the uniaxial compressive stress-strain curve of the corresponding meso-model. Finally, the feasibility of the proposed method was evaluated through training and testing. The training efficiency and prediction accuracy of the GoogLeNet model are better than the AlexNet and ResNet models, and have good generalization ability and robustness.

  • loading
  • [1]
    肖诗云, 乔倩倩. 混凝土等效弹性模量细观影响因素[J]. 沈阳建筑大学学报(自然科学版), 2015, 31(4): 636-643. (XIAO Shiyun, QIAO Qianqian. Mesoscopic influence factor analysis on the equivalent elastic modulus of concrete[J]. Journal of Shenyang Jianzhu University (Natural Science), 2015, 31(4): 636-643.(in Chinese)
    杜敏, 金浏, 李东, 等. 骨料粒径对混凝土劈拉性能及尺寸效应影响的细观数值研究[J]. 工程力学, 2017, 34(9): 54-63. (DU Min, JIN Liu, LI Dong, et al. Mesoscopic simulation study of the influence of aggregate size on mechanical properties and specimen size effect of concrete subjected to splitting tensile loading[J]. Engineering Mechanics, 2017, 34(9): 54-63.(in Chinese) doi: 10.6052/j.issn.1000-4750.2016.02.0122
    张伟平, 王浩, 顾祥林. 粗骨料随机分布对混凝土导热性能的影响[J]. 建筑材料学报, 2017, 20(2): 168-173,197. (ZHANG Weiping, WANG Hao, GU Xianglin. Effects of randomly distributed aggregates on thermal properties of concrete[J]. Journal of Building Materials, 2017, 20(2): 168-173,197.(in Chinese) doi: 10.3969/j.issn.1007-9629.2017.02.002
    ZHANG J, WANG Z Y, YANG H W, et al. 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates[J]. Construction and Building Materials, 2018, 164: 350-361. doi: 10.1016/j.conbuildmat.2017.12.229
    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
    YANN L C, YOSHUA B, GEOFFREY H. Deep learning[J]. Nature, 2015, 521: 436-444. doi: 10.1038/nature14539
    严春满, 王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索, 2021, 15(1): 27-46. (YAN Chunman, WANG Cheng. Development and application of convolutional neural network model[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(1): 27-46.(in Chinese) doi: 10.3778/j.issn.1673-9418.2008016
    GENG J, FAN J C, WANG H Y, et al. High-resolution SAR image classification via deep convolutional autoencoders[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2351-2355. doi: 10.1109/LGRS.2015.2478256
    REN S Q, HE K M, RIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    AGRAWAL A, CHOUDHARY A. Deep materials informatics: applications of deep learning in materials science[J]. MRS Communications, 2019, 9(3): 779-792. doi: 10.1557/mrc.2019.73
    YE S, LI B, LI Q Y, et al. Deep neural network method for predicting the mechanical properties of composites[J]. Applied Physics Letters, 2019, 115(16): 161901. doi: 10.1063/1.5124529
    LI X, LIU Z L, CUI S Q, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 735-753. doi: 10.1016/j.cma.2019.01.005
    YANG C, KIM Y S, RYU S, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks[J]. Materials & Design, 2020, 189: 108509.
    SHIN H K, AHN Y H, LEE S H, et al. Digital vision based concrete compressive strength evaluating model using deep convolutional neural network[J]. CMC Computers Materials & Continua, 2019, 61(3): 911-928.
    石高辉, 陈晓荣, 刘亚茹, 等. 基于卷积神经网络的人脸关键点检测算法设计[J]. 电子测量技术, 2019, 42(24): 125-130. (SHI Gaohui, CHEN Xiaorong, LIU Yaru, et al. Design of facial point detection algorithm based on convolutional neural network[J]. Electronic Measurement Technology, 2019, 42(24): 125-130.(in Chinese)
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    CHRISTIAN S, LIU W, JIA Y Q. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, 2015.
    HUBEL D H, WIESEL T N. Early exploration of the visual cortex[J]. Neuron, 1998, 20(3): 402-412.
    NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Isrel, 2010.
    ZHANG Y H, CHEN Q Q, WANG Z Y, et al. 3D mesoscale fracture analysis of concrete under complex loading[J]. Engineering Fracture Mechanics, 2019, 220: 106646. doi: 10.1016/j.engfracmech.2019.106646
    唐欣薇, 张楚汉. 基于随机改进随机骨料模型的混凝土细观断裂模拟[J]. 清华大学学报(自然科学版), 2008, 48(3): 348-351, 356. (TANG Xinwei, ZHANG Chuhan. Simulation of meso-fracture for concrete based on the developed random aggregate model[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(3): 348-351, 356.(in Chinese) doi: 10.3321/j.issn:1000-0054.2008.03.012
    WALARAVEN J C, REINHARDT H W. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading[J]. Heron, 1991, 26(1A): 23-33.
    WANG X F, YANG Z J, YATES J R, et al. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores: a size effect study[J]. Construction and Building Materials, 2015, 80: 262-272. doi: 10.1016/j.conbuildmat.2015.02.002
    刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂[J]. 清华大学学报(自然科学版), 1996, 36(1): 84-89. (LIU Guangyan, WANG Zongmin. Numerical simulation study of fracture of concrete materials using random aggregate model[J]. Journal of Tsinghua University (Science and Technology), 1996, 36(1): 84-89.(in Chinese) doi: 10.3321/j.issn:1000-0054.1996.01.007
    方秦, 还毅, 张亚栋, 等. ABAQUS混凝土损伤塑性模型的静力性能分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(3): 254-260. (FANG Qin, HUAN Yi, ZHANG Yadong, et al. Investigation into static properties of damaged plasticity model for concrete in ABAQUS[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(3): 254-260.(in Chinese)
    陈青青, 张煜航, 张杰, 等. 含孔隙混凝土二维细观建模方法研究[J]. 应用数学和力学, 2020, 41(2): 182-194. (CHEN Qingqing, ZHANG Yuhang, ZHANG Jie, et al. Study on a 2D mesoscopic modeling method for concrete with voids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 182-194.(in Chinese)
    章敏敏, 徐和平, 王晓洁, 等. 谷歌TensorFlow机器学习框架及应用[J]. 微型机与应用, 2017, 36(10): 58-60. (ZHANG Minmin, XU Heping, WANG Xiaojie, et al. Application of Google TensorFlow machine learning framework[J]. Microcomputer & Its Applications, 2017, 36(10): 58-60.(in Chinese)
    JANSSON J, LI Z, SUNG W K. On finding the Adams consensus tree[J]. Information & Computation, 2017, 256: 334-347.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (1049) PDF downloads(137) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint