Volume 43 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WANG Yahui. An Improved 3rd-Order WENO Scheme Based on a New Reference Smoothness Indicator[J]. Applied Mathematics and Mechanics, 2022, 43(7): 802-815. doi: 10.21656/1000-0887.420194
Citation: WANG Yahui. An Improved 3rd-Order WENO Scheme Based on a New Reference Smoothness Indicator[J]. Applied Mathematics and Mechanics, 2022, 43(7): 802-815. doi: 10.21656/1000-0887.420194

An Improved 3rd-Order WENO Scheme Based on a New Reference Smoothness Indicator

doi: 10.21656/1000-0887.420194
  • Received Date: 2021-07-12
  • Rev Recd Date: 2021-08-22
  • Publish Date: 2022-07-15
  • In order to meet the requirement of high accuracy and high resolution in computational fluid dynamics (CFD), a new reference smoothness indicator was proposed to reduce the numerical dissipation of the classical 3rd-order weighted essentially non-oscillatory (WENO) scheme. The construction method is different from the classical WENO-Z scheme. It is obtained through the L2-norm approximation of the derivatives of the reconstruction polynomials of the whole global stencil, and the linear combination of the derivatives of the reconstruction polynomials on the candidate sub-stencils. With this calculation method, higher-order reference smoothness indicators can be obtained than the WENO-Z scheme. In addition, different reference smoothness indicators can be obtained by change of the value of free parameter $ \varphi$. A series of numerical examples prove the effectiveness of the reference smoothness indicator.

  • loading
  • [1]
    LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    [2]
    HARTEN A, OSHER S. Uniformly high-order accurate non-oscillatory schemes Ⅰ[J]. SIAM Journal on Numerical Analysis, 1987, 24(2): 279-309. doi: 10.1137/0724022
    [3]
    HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high-order accurate essentially non-oscillatory schemes Ⅲ[J]. Journal of Computational Physics, 1987, 71: 231-303. doi: 10.1016/0021-9991(87)90031-3
    [4]
    SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471. doi: 10.1016/0021-9991(88)90177-5
    [5]
    SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes Ⅱ[J]. Journal of Computational Physics, 1989, 83(1): 32-78. doi: 10.1016/0021-9991(89)90222-2
    [6]
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    [7]
    HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted-essentially-non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567. doi: 10.1016/j.jcp.2005.01.023
    [8]
    BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227: 3191-3211. doi: 10.1016/j.jcp.2007.11.038
    [9]
    GEROLYMOS R A, SÉNÉCHAL S, VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228(23): 8481-8524. doi: 10.1016/j.jcp.2009.07.039
    [10]
    WANG Y H, DU Y L, ZHAO K L, et al. Modified stencil approximations for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2019, 81(6): 898-922.
    [11]
    FU L, HU X Y, ADAMS N A. A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2018, 374: 724-751. doi: 10.1016/j.jcp.2018.07.043
    [12]
    WU X S, ZHAO Y X. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids, 2015, 78(3): 162-187. doi: 10.1002/fld.4014
    [13]
    WU X S, LIANG J H, ZHAO Y X. A new smoothness indicator for third-order WENO scheme[J]. International Journal for Numerical Methods in Fluids, 2016, 81(7): 451-459. doi: 10.1002/fld.4194
    [14]
    XU W Z, WU W G. An improved third-order WENO-Z scheme[J]. Journal of Scientific Computing, 2018, 75: 1808-1841. doi: 10.1007/s10915-017-0587-4
    [15]
    WANG Y H, DU Y L, ZHAO K L, et al. A low-dissipation third-order weighted essentially nonoscillatory scheme with a new reference smoothness indicator[J]. International Journal for Numerical Methods in Fluid, 2020, 92(9): 1212-1234.
    [16]
    王亚辉. 求解双曲守恒律方程的三阶修正模板WENO格式[J]. 应用数学和力学, 2022, 43(2): 224-236. (WANG Yahui. A 3rd-order modified stencil WENO scheme for solution of hyperbolic conservation law equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 224-236.(in Chinese)

    WANG Yahui. A 3rd-order modified stencil WENO scheme for solution of hyperbolic conservation law equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 224-236. (in Chinese))
    [17]
    徐维铮, 孔祥韶, 吴卫国. 基于映射函数的三阶 WENO 改进格式及其应用[J]. 应用数学和力学, 2017, 38(10): 1120-1135. (XU Weizheng, KONG Xiangshao, WU Weiguo. An improved 3rd-order WENO scheme based on mapping functions and its application[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1120-1135.(in Chinese)

    XU Weizheng, KONG Xiangshao, WU Weiguo. An improved 3rd-order WENO scheme based on mapping functions and its application[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1120-1135. (in Chinese)
    [18]
    徐维铮, 吴卫国. 三阶WENO-Z格式精度分析及其改进格式[J]. 应用数学和力学, 2018, 39(8): 946-960. (XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960.(in Chinese)

    XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960. (in Chinese))
    [19]
    LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193. doi: 10.1002/cpa.3160070112
    [20]
    SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31. doi: 10.1016/0021-9991(78)90023-2
    [21]
    TITAREV V A, TORO E F. Finite-volume WENO schemes for three-dimensional conservation laws[J]. Journal of Computational Physics, 2004, 201(1): 238-260. doi: 10.1016/j.jcp.2004.05.015
    [22]
    SCHULZ-RINNE C W, COLLINS J P, GLAZ H M. Numerical solution of the Riemann problem for two-dimensional gas dynamics[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1394-1414. doi: 10.1137/0914082
    [23]
    WOODWAED P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 447-465.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article views (787) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return