Volume 43 Issue 3
Mar.  2022
Turn off MathJax
Article Contents
BAI Yu, FANG Huiling, ZHANG Yan. Unsteady Slip Flow and Heat Transfer Analysis of Oldroyd-B Fluid Over the Stretching Wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280. doi: 10.21656/1000-0887.420197
Citation: BAI Yu, FANG Huiling, ZHANG Yan. Unsteady Slip Flow and Heat Transfer Analysis of Oldroyd-B Fluid Over the Stretching Wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280. doi: 10.21656/1000-0887.420197

Unsteady Slip Flow and Heat Transfer Analysis of Oldroyd-B Fluid Over the Stretching Wedge

doi: 10.21656/1000-0887.420197
  • Received Date: 2021-07-12
  • Accepted Date: 2021-07-12
  • Rev Recd Date: 2021-09-26
  • Available Online: 2022-01-28
  • Publish Date: 2022-03-08
  • The unsteady flow of the upper-convected Oldroyd-B fluid over the heated wedge in the presence of velocity slip was discussed. The process of heat transfer and the effect of the thermal retardation time on heat transfer were simulated with the relaxation-retardation heat flux model. The buoyancy, the thermal radiation and the convective heat transfer boundary condition were considered to further elucidate the flow and heat transfer characteristics. The homotopy analysis method was used to obtain the approximate analytical solutions to ordinary differential equations. It is found that the magnification of the slip parameter can promote the flow of fluid, and the fluid temperature rises with the thermal radiation parameter. In addition, the temperature field shows opposite trends in the thermal relaxation time and the thermal retardation time.

  • loading
  • [1]
    FALKNER V M, SKAN S W. Solutions of the boundary-layer equations[J]. Philosophical Magazine, 1931, 12(80): 865-896.
    LIN H T, LIN L K. Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number[J]. International Journal of Heat and Mass Transfer, 1987, 30(6): 1111-1118. doi: 10.1016/0017-9310(87)90041-X
    KUO B L. Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method[J]. International Journal of Heat and Mass Transfer, 2005, 48(23/24): 5036-5046.
    AFIFY A A, BAZID M A A. MHD Falkner-Skan flow and heat transfer characteristics of nanofluids over a wedge with heat source/sink effects[J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(8): 1844-1852. doi: 10.1166/jctn.2014.3578
    ASHRAF M B, HAYAT T, ALSULAMI H. Mixed convection Falkner-Skan wedge flow of an Oldroyd-B fluid in presence of thermal radiation[J]. Journal of Applied Fluid Mechanic, 2016, 9: 1753-1762. doi: 10.18869/acadpub.jafm.68.235.24323
    MAHDY A, CHAMKHA A J. Unsteady MHD boundary layer flow of tangent hyperbolic two-phase nanofluid of moving stretched porous wedge[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(11): 2567-2580.
    KEBEDE T, HAILE E, AWGICHEW G, et al. Heat and mass transfer analysis in unsteady flow of tangent hyperbolic nanofluid over a moving wedge with buoyancy and dissipation effects[J]. Heliyon, 2020, 6(4): e03776. doi: 10.1016/j.heliyon.2020.e03776
    朱婧, 郑连存, 张志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动[J]. 应用数学和力学, 2010, 31(4): 411-419. (ZHU Jing, ZHENG Liancun, ZAHNG Zhigang. Efect of the slip condition on the MHD stagnation-point flow over a power-law stretching sheet[J]. Applied Mathematics and Mechanics, 2010, 31(4): 411-419.(in Chinese) doi: 10.3879/j.issn.1000-0887.2010.04.004
    ZHU J, YANG D, ZHENG L C, et al. Effects of second order velocity slip and nanoparticles migration on flow of Buongiorno nanofluid[J]. Applied Mathematics Letters, 2016, 52: 183-191. doi: 10.1016/j.aml.2015.09.003
    许晓勤, 陈淑梅. 基于二阶滑移边界的MHD 在可渗透延伸壁面上的驻点流研究[J]. 应用数学和力学, 2016, 37(8): 880-888. (XU Xiaoqin, CHEN Shumei. Study on MHD stagnation-point flow over permeable stretching sheets with 2nd-order slip boundaries[J]. Applied Mathematics and Mechanics, 2016, 37(8): 880-888.(in Chinese)
    MEGAHED A M. Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet embedded in a porous medium and convectively heated[J]. Mathematics and Computers in Simulation, 2021, 187: 97-109. doi: 10.1016/j.matcom.2021.02.018
    CATTANEO C. Sulla conduzione del calore[J]. Atti del Seminario Matematico e Fisico Dell’Universita di Modena e Reggio Emilia, 1948, 3: 83-101.
    CHRISTOV C I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction[J]. Mechanics Research Communications, 2009, 36(4): 481-486. doi: 10.1016/j.mechrescom.2008.11.003
    HAYAT T, AYUB T, MUHAMMAD T. Flow of variable thermal conductivity Oldroyd-B fluid with generalized Fourier’s and Fick’s laws[J]. Journal of Molecular Liquilds, 2017, 234: 9-17. doi: 10.1016/j.molliq.2017.03.053
    SHEHZAD S A, ABBASI F M, HAYAT T, et al. Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection[J]. Journal of Molecular Liquilds, 2016, 224: 274-278. doi: 10.1016/j.molliq.2016.09.109
    ZHANG Y, BAI Y, YUAN B, et al. Flow and heat transfer analysis of a Maxwell-power-law fluid film with forced thermal Marangoni convective[J]. Internatinal Communications in Heat and Mass Transfer, 2021, 121: 105062. doi: 10.1016/j.icheatmasstransfer.2020.105062
    BAI Y, WANG Q, ZHANG Y. Unsteady stagnation-point flow of upper-convected Oldroyd-B nanofluid with variable thermal conductivity and relaxation-retardation double-diffusion model[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2021, 31(11): 3373-3393.
    LIAO S. Beyond perturbation: introduction to the homotopy analysis method[J]. Applied Mechanics Reviews, 2003, 57(5): B25-B26.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (508) PDF downloads(42) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint