Volume 43 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The Anti-Plane Problem of Collinear Interface Cracks Emanating From a Circular Hole in 1D Hexagonal Quasicrystal Bi-Materials[J]. Applied Mathematics and Mechanics, 2022, 43(6): 639-647. doi: 10.21656/1000-0887.420202
Citation: ZHANG Bingcai, DING Shenghu, ZHANG Laiping. The Anti-Plane Problem of Collinear Interface Cracks Emanating From a Circular Hole in 1D Hexagonal Quasicrystal Bi-Materials[J]. Applied Mathematics and Mechanics, 2022, 43(6): 639-647. doi: 10.21656/1000-0887.420202

The Anti-Plane Problem of Collinear Interface Cracks Emanating From a Circular Hole in 1D Hexagonal Quasicrystal Bi-Materials

doi: 10.21656/1000-0887.420202
  • Received Date: 2021-07-14
  • Rev Recd Date: 2021-10-10
  • Available Online: 2022-05-21
  • Publish Date: 2022-06-30
  • The anti-plane problem of asymmetric collinear interface cracks emanating from a circular hole in 1D hexagonal quasicrystal bi-materials was studied. With the Stroh formula and the complex function method, the complex potential functions under the coupling action of the phonon field and the phason field were obtained. The analytical expressions of the stress intensity factor (SIF) and the energy release rate (ERR) at the crack tip were given. The effects of the circular hole radius and the crack length on the SIF, and the effects of the coupling coefficient, the phonon field stress and the phason field stress on the ERR, were discussed. The results show that, the SIF tends to be stable with the increase of the right crack length for a constant circular hole radius. For a certain phason field stress value, the ERR reaches the minimum value, which indicates that a specific phason field stress can inhibit the crack growth.

  • loading
  • [1]
    SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1954. doi: 10.1103/PhysRevLett.53.1951
    [2]
    孟祥敏, 佟百运, 吴玉琨. Al65Cu20Co15准晶体的力学性能[J]. 金属学报, 1994, 30(2): 61-64. (MENG Xiangmin, TONG Baiyun, WU Yukun. Mechanical properties of Al65Cu20Co15 quasicrystal[J]. Acta Metallurgica Sinica, 1994, 30(2): 61-64.(in Chinese)

    MENG Xiangmin, TONG Baiyun, WU Yukun. Mechanical properties of Al65Cu20Co15 quasicrystal[J]. Acta Metallurgica Sinica, 1994, 30(2): 61-64. (in Chinese))
    [3]
    FAN T Y, LI X F, SUN Y F. A moving screw dislocation in a one-dimensional hexagonal quasicrystal[J]. Acta Physica Sinica (Overseas Edition), 1999, 8(4): 288-295. doi: 10.1088/1004-423X/8/4/007
    [4]
    LI L F, FAN T Y. Exact solutions of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal[J]. Applied Mathematics and Computation, 2008, 196(1): 1-5. doi: 10.1016/j.amc.2007.05.028
    [5]
    WANG X, PAN E. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals[J]. Pramana, 2008, 70(5): 911-933. doi: 10.1007/s12043-008-0099-8
    [6]
    ZHOU J M, LI L H, Wang G X. Dynamic problems in a decagonal quasicrystal with a mode Ⅱ Griffith crack[J]. Chinese Journal of Engineering Mathematics, 2021, 38(1): 136-150.
    [7]
    郭俊宏, 刘官厅. 一维六方准晶中具有不对称裂纹的圆形孔口问题的解析解[J]. 应用数学学报, 2007, 30(6): 1066-1075. (GUO Junhong, LIU Guanting. Analytic solutions of the one-dimensional hexagonal quasicrystals about problem of a circular hole with asymmetry cracks[J]. Acta Mathematicae Applicatae Sinica, 2007, 30(6): 1066-1075.(in Chinese) doi: 10.3321/j.issn:0254-3079.2007.06.012

    GUO Junhong, LIU Guanting. Analytic solutions of the one-dimensional hexagonal quasicrystals about problem of a circular hole with asymmetry cracks[J]. Acta Mathematicae Applicatae Sinica, 2007, 30(6): 1066-1075. (in Chinese)) doi: 10.3321/j.issn:0254-3079.2007.06.012
    [8]
    郭俊宏, 刘官厅. 一维六方准晶中带双裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2008, 29(4): 439-446. (GUO Junhong, LIUGuanting. Analytic solutions of problem about an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29(4): 439-446.(in Chinese) doi: 10.3879/j.issn.1000-0887.2008.04.006

    GUO Junhong, LIUGuanting. Analytic solutions of problem about an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29(4): 439-446. (in Chinese)) doi: 10.3879/j.issn.1000-0887.2008.04.006
    [9]
    GUO J H, LIU G T. Exact analytic solutions for an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasi-crystal[J]. Chinese Physics B, 2008, 17(7): 2610-2620. doi: 10.1088/1674-1056/17/7/044
    [10]
    GUO J H, LU Z X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2011, 217(22): 9397-9403. doi: 10.1016/j.amc.2011.04.028
    [11]
    LI L H, LIU G T. Interaction of a dislocation with an elliptical hole in icosahedral quasicrystals[J]. Philosophical Magazine Letters, 2013, 93(3): 142-151. doi: 10.1080/09500839.2012.752883
    [12]
    YANG J, LI X, DING S H. Anti-plane analysis of a circular hole with three unequal cracks in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Journal of Engineering Mathematics, 2016, 33(2): 184-198.
    [13]
    白巧梅, 丁生虎. 一维六方压电准晶中正六边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2019, 40(10): 1071-1080. (BAI Qiaomei, DING Shenghu. An anti-plane problem of cracks at edges of regular hexagonal holes in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1071-1080.(in Chinese)

    BAI Qiaomei, DING Shenghu. An anti-plane problem of cracks at edges of regular hexagonal holes in 1D Hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1071-1080. (in Chinese))
    [14]
    TUPHOLME G E. An antiplane shear crack moving in one-dimensional hexagonal quasicrystals[J]. International Journal of Solids and Structures, 2015, 71: 255-261. doi: 10.1016/j.ijsolstr.2015.06.027
    [15]
    TUPHOLME G E. Row of shear cracks moving in one-dimensional hexagonal quasicrystal line materials[J]. Engineering Fracture Mechanics, 2015, 134: 451-458. doi: 10.1016/j.engfracmech.2014.07.002
    [16]
    EL-BORGI S, ERDOGAN F, HATIRA F B. An interface crack between a functionally graded coating and a homogeneous substrate under thermo-mechanical loading[J]. Materials Science Forum, 2003, 423/425: 601-606. doi: 10.4028/www.scientific.net/MSF.423-425.601
    [17]
    KUANG J S, WANG Y H. Analysis of interfacial cracks emanating from a hole in a bi-material plate[J]. European Journal of Mechanics A: Solids, 1999, 18(3): 465-479. doi: 10.1016/S0997-7538(99)00116-3
    [18]
    LOBODA V, KOMAROV O, BILYI D, et al. An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal[J]. Acta Mechanica, 2020, 231(8): 3419-3433. doi: 10.1007/s00707-020-02721-8
    [19]
    SONG T S, HASSAN A. Dynamic anti-plane analysis for symmetrically radial cracks near a non-circular cavity in piezoelectric bi-materials[J]. Acta Mechanica, 2015, 226(7): 2089-2101. doi: 10.1007/s00707-015-1303-9
    [20]
    AN N, SONG T S, HOU G L. Interfacial cracks near an eccentric circular hole in piezoelectric bi-materials subjected to dynamic incident anti-plane shearing[J]. AIP Advances, 2020, 10(5): 1-11.
    [21]
    AN N, SONG T S. Dynamic fracture behavior for functionally graded piezoelectric bi-materials with interfacial cracks near a circular hole[J]. Waves in Random and Complex Media, 2021: 1-19. DOI: 10.1080/17455030.2021.1936284.
    [22]
    ZHANG L L, WU D, XU W S, et al. Green’s functions of one-dimensional quasicrystal bi-material with piezoelectric effect[J]. Physics Letters A, 2016, 380(39): 3222-3228. doi: 10.1016/j.physleta.2016.07.043
    [23]
    HU K Q, GAO C F, ZHENG Z, et al. Interaction of collinear interface cracks between dissimilar one-dimensional hexagonal piezoelectric quasicrystals[J]. ZAMM: Zeitschrift fur Angewandte Mathematic und Mechanik, 2021, 101(11): 1-26. doi: 10.1002/zamm.202000360
    [24]
    HU K Q, JIN H, YANG Z J, et al. Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect[J]. Acta Mechanica, 2019, 230(7): 2455-2474. doi: 10.1007/s00707-019-02404-z
    [25]
    FAN C Y, CHEN S, ZHANG Q Y, et al. Fundamental solutions and analysis of an interfacial crack in a one-dimensional hexagonal quasicrystal bi-material[J]. Mathematics and Mechanics of Solids, 2020, 25(5): 1124-1139. doi: 10.1177/1081286520903085
    [26]
    ZHAO M H, FAN C Y, LU C S, et al. Analysis of interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane loads[J]. Engineering Fracture Mechanics, 2021, 243: 107534. doi: 10.1016/j.engfracmech.2021.107534
    [27]
    FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Application[M]. Beijing: Science Press, 2010.
    [28]
    MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen, Holland: Noordhoff, 1953.
    [29]
    杨娟. 压电效应下一维六方准晶中孔边多裂纹反平面断裂问题研究[D]. 博士学位论文. 银川: 宁夏大学, 2015.

    YANG Juan. Study on anti-plane fracture problems of Multiple cracks emanating from a hole in one-dimensional hexagonal quasicrystals with piezoelectric effects[D]. PhD Thesis. Yinchuan: Ningxia University, 2015. (in Chinese)
    [30]
    ZHOU Y B, LI X F. Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal[J]. Philosophical Magazine, 2018, 98(19): 1780-1798. doi: 10.1080/14786435.2018.1459057
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (72) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return